Preview

Arctic and Antarctic Research

Advanced search

Auroras in the cusp and its poleward vicinity: a case study

https://doi.org/10.30758/0555-2648-2018-64-2-141-156

Abstract

Summary We present a case study of the dayside aurora observed simultaneously with optical instruments from the ground and with auroral particle spectrometers aboard the DMSP F16 and F17 satellites. Optical observations were carried out with an all-sky camera at the Polar Geophysical Institute (PGI) observatory Barentsburg on Svalbard. The aurora as a whole moved equatorward in response to negative turning of the IMF Bz component and then the distinct faint rayed arc intensified, moved to the north and faded. Satellite DMSP F17 crossed the cusp twenty minutes after Bz turned southward. Joint analysis of optical and satellite data showed that faint auroral structures are embedded into the cusp precipitations and correspond to the bursts of electron precipitations with energy below 100 eV. The next satellite crossed the camera field-of-view ten minutes later and the data showed that the source of the faded poleward moving rayed arc was located, most probably, on the non-closed magnetic field lines. This finding and the presence of ion-energy dispersion in the DMSP data allows us to make the conclusion that the dayside reconnection may be considered as the reason for this kind of aurora activity. In this study we also estimated the altitude and horizontal scale of auroral rays in the cusp.

About the Authors

V. V. Safargaleev
Polar Geophysical Institute RAS
Russian Federation

Apatity



T. I. Sergienko
Swedish Institute of Space Physics
Sweden

Kirun



References

1. Safargaleev V., Kozlovsky A., Sergienko T., Yeoman T.K., Uspensky M., Wright D.M., Nilsson H., Turunen T., Kotikov A. Optical, radar and magnetic observations magnetosheath plasma capture during a positive IMF Bz impulse. Annales Geophys. 2008. 26 (3): 517–531. doi:10.5194/angeo-26-517-2008.

2. Newell P.T., Meng C.-I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophys. Res. Lett. 1992. 19 (6): 609–612. doi:10.1029/92GL00404.

3. Vorobjev V.G., Starkov G.V., Gustaffson G., Feldstein Y. I., Shevnina N.F. Dynamics of day and night aurora during substorms. Planet. Space Sci. 1975. 23 (2): 269–278. doi:10.1016/00320633(75)90132-4.

4. Tsyganenko N.A. Data-based modelling of the Earth’s dynamic magnetosphere: a review. Annales Geophys. 2013. 31 (10): 1745–1772.

5. Farrugia C.J., Sandholt P.E., Burlaga L.F. Auroral activity associated with Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. J. Geophys. Res. 1994. 99 (10): 19403–19411. doi:10.1029/94JA00926.

6. Taguchi S., Hosokawa K., Ogawa Y., Aoki T., Taguchi M. Double bursts inside a poleward-moving auroral form in the cusp. J. Geophys. Res. 2012. 117 (12). doi: 10.1029/2012JA018150.

7. Ober D.M., Maynard N.C., Burke W.J., Moen J., Egeland A., Sandholt P.E., Farrugia C.J., Weber E.J., Scudder J.D. Mapping prenoon auroral structures to the ionosphere. J. Geophys. Res. 2000. 105 (12): 27519–27530. doi:10.1029/2000JA000009.

8. Moen J., Holtet J.A., Pedersen A., Lybekk B., Svenes K., Oksavik K., Denig W.F., Lucek E., Soraas F., Andre M. Cluster boundary layer measurements and optical observations at magnetically conjugate sites. Annales Geophys. 2001. 19 (10/12): 1655–1668. doi:10.5194/angeo-19-1655-2001.

9. Safargaleev V.V., Shibaeva D.N., Sergienko T.I., Kornilov I.A. On the possibility of coupling satellite and ground-based optical measurements in the region of pulsating auroras. Geomagnetism and Aeronomy. 2010. 50 (7): 873–879. doi:10.1134/S001679321007008X.

10. Starkov G.V., Rezhenov B.V., Vorob’ev V.G., Feldstein Ya.I., Gromova L.I. Dayside auroral precipitation structure. Geomagnetism and Aeronomy. 2002. 42 (2): 176–183.

11. Starkov G.V. Mathematical model of the auroral boundaries. Geomagnetism i Aeronomia. Geomagnetism and Aeronomy. 1994. 34 (8): 80–86. [In Rissian].

12. Starkov G.V., Vorobjev V.G., Feldstein Ya.I. Relative position of the regions of auroral precipitation and discrete auroras. Geomagnetism and Aeronomy. 2005. 45 (2): 170–180.

13. Safargaleev V.V., Tagirov V.R., Osipenko S.V., Kudryashova N.V. Response of postnoon auroras to changes in the IMF Bz component. Geomagnetism and Aeronomy. 2004. 44 (3): 316–323.

14. Jacobsen B., Sandholt P.E., Burke W.J., Denig W.F., Maynard N.C. Optical signatures of prenoon auroral precipitation: Sources and responses to solar wind variations. J. Geophys. Res. 1995. 100 (5): 8003–8012. doi:10.1029/94JA02726.

15. Sandholt P.E., Farrugia C.J., Cowley S.W.H., Lester M., Cerisier J.-C. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north. Annales Geophys. 2001. 19 (5): 487–493. doi:10.5194/angeo-19-487-2001.

16. Hardy D.A., Gussenhoven M.S., Brautigam D. A statistical model of auroral ion precipitation. J. Geophys. Res. 1989. 94 (1): 370–392. doi: 10.1029/JA094iA01p00370.

17. Newell P.T., Wing S., Meng C-I., Sigilitto V. The auroral oval position, structure and intensity of precipitation from 1984 onward: an automated on-line base. J. Geophys. Res. 1991. 96 (4): 5877–5882. doi:10.1029/90JA02450.

18. Gustavsson B. Three dimensional imaging of aurora and airglow. Doctoral Thesis. IRF Scientific Report 267. 2000. URL: http://www2.irf.se/~bjorn/thesis/thesis.html (accessed 01.07.2018).

19. Brändström U. The Auroral Large Imaging System - Design, Operation and Scientific Results, IRF Scientific Report 279. 2003. URL: http://www2.irf.se/~urban/avh/html/htmlthesis.html (accessed 01.07.2018).

20. Starkov G.V. Auroral heights in the polar cap. Geomagnetism i Aeronomia. Geomagnetism and Aeronomy. 1968. 8 (1): 36–41. [In Russian].

21. Solomon S.C., Hays P.B., Abreu V.J. The auroral 6300 A emission: Observations and modelling. J. Geophys. Res. 1998. 93 (9): 9867–9882. doi:10.1029/JA093iA09p09867.

22. Ivanov V.E., Kirillov A.S., Sergienko T.I., Steen A. Modelling of the altitude distribution of green line (5577A) luminosity in aurora. Airglow and Aurora. Proc. SPIE. 1993, 2050: 105–113. doi:10.1117/12.164815.

23. Sergienko T.I., Ivanov V.E. A new approach to calculate the excitation of atmospheric gases by auroral electrons. Annales Geophys. 1993. 11 (8): 717–727.

24. Safargaleev V.V., Mitrofanov V.M., Roldugin A.V. Simultaneous optical and satellite observations of auroras in the mantle: case study. Geomagnetism and Aeronomy. 2016. 56, 6: 706–715. doi:10.1134/S0016793216060141.

25. Fasel G.J. Dayside poleward moving auroral forms: a statistical study. J. Geophys. Res. 1995. 100 (7): 11891–11905. doi:10.1029/95JA00854.

26. Rieff P.H., Burch J.L., Hill T.W. Solar wind plasma injection at the dayside magnetospheric cusp. J. Geophys. Res. 1977. 82 (7): 479–491. doi:10.1029/JA082i004p00479.

27. Lyatsky W.B., Safargaleev V.V. Flute instability of the magnetopause in the presence of the magnetic barrier. Geomagnetism i Aeronomia. Geomagnetism and Aeronomy. 1991. 31, 2: 354–359. [In Russian].

28. Kozlovsky A.E., Safargaleev V.V., Jussila J., Kustov A.V. Pre-noon high latitude auroral arcs as a manifestation of the interchange instability. Annales Geophys. 2003. 21 (12): 2303–2314. doi:10.5194/angeo-21-2303-2003.


Review

For citations:


Safargaleev V.V., Sergienko T.I. Auroras in the cusp and its poleward vicinity: a case study. Arctic and Antarctic Research. 2018;64(2):141-156. https://doi.org/10.30758/0555-2648-2018-64-2-141-156

Views: 1098


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)