Preview

Arctic and Antarctic Research

Advanced search

Magnetometry and ground penetrating radar in application to mapping of polygonal wedge ice of yedoma complex

https://doi.org/10.30758/0555-2648-2018-64-4-427-438

Abstract

Paper is dedicated to geophysical mapping of polygonal wedge ice. Magnetometric and ground penetrating radar surveys were implemented on a small area of Yedoma ice complex on Kurungnakh island in Lena river delta. Such deposits are widely spread on a huge areas of Siberia and Alaska. The study was conducted near the thermoerosional gully, which propagates along the most thick ice wedges. Polygonal pattern is observable on high-resolution aerial imagery and digital elevation model - this data was used during the interpreting of obtained results. Study area (40×50 m) was covered with highresolution magnetic survey at the elevation of 2 m with 2×2 m step and with ground penetrating radar survey along profiles with 1 m distance between the profiles. Map of total magnetic field anomalies allow to determine the ice wedges of Yedoma ice complex distinctly. Difference between maximum positive (polygons centers) and negative (ice wedges) anomalies reaches 6 nT (error of the survey is 0,3 nT). Beyond that smaller ice wedges which penetrate the ice wedges of Yedoma complex are also observable in magnetic field. Basing on ground penetrating radar data an amplitude slice of at 3,5 m depth was built. Yedoma ice wedges are observable at depth of 3–4 m. Ground penetrating radar data is quite noisy due to surface inhomogeneity (puddles, knolls, etc.). Results of the surveys were compared in the light of practical application of the methods for above mentioned goal. Magnetometric method appears as more efficient than ground penetrating radar survey: it does not require a contact with the surface and more rapid, it is more sensitive as the case stands. Ground penetrating radar method may have advantages in the case of natural (magnetic storm, high-magnetized overlaying deposits) and anthropogenic (metal constructions — pipelines, ETL) noise.

About the Authors

L. V. Tsibizov
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences; Novosibirsk national research state university
Russian Federation
Novosibirsk


E. I. Esin
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences; Novosibirsk national research state university
Russian Federation
Novosibirsk


A. V. Grigorevskaya
Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences
Russian Federation
Novosibirsk


K. A. Sosnovtsev
Novosibirsk national research state university
Russian Federation
Novosibirsk


References

1. Liljedahl A.K. Boike J., Daanen R.P., Fedorov A.N., Frost G.V., Grosse G., Hinzman L.D., Iijma Y., Jorgenson J.C., Matveyeva N., Necsoiu M., Raynolds M.K., Romanovsky V.E., Schulla J., Tape K.D., Walker D.A., Wilson C.J., Yabuki H., Zonaet D. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience. 2016, 9, 4: 312.

2. Andersland O.B., Ladanyi B. An Introduction to Frozen Ground Engineering, 2nd edn. Hoboken, New Jersey: John Wiley & Sons, Inc. 2004: 363 p.

3. Stanilovskaia Iu.V., Merzliakov V.P. Proba bilistic assessment of the danger of polygonal ice wedges for pipelines. Nauka i tekhnologii truboprovodnogo transporta nefti i nefteproduktov. Science and technology of pipeline transportation of oil and petroleum products. 2013, 3: 48–54. [In Russian].

4. Vasil’chuk Iu.K. Povtorno-zhil’nye l’dy. Kriosfera neftegazokondensatnykh mestorozhdenii poluostrova Iamal. Kriosfera Bovanenkovskogo neftegazokondensatnogo mestorozhdeniia. Massive wedge ice. The cryosphere of oil and gas condensate fields on the Yamal Peninsula. The cryosphere of the Bovanenkovo oil and gas condensate field. V. 2. Moscow: OOO «Gazprom ekspo», 2013: 318–325. [In Russian].

5. Bogoliubov A.N., Bogoliubova N.P., Mozganova E.Ia. Rekomendatsii po kompleksirovaniiu geofizicheskikh metodov pri merzlotnoi s”emke. PNIIIS Recommendations on the integration of geophysical methods in cryogenic surveys. PNIIIS. Moscow: Stroiizdat, 1987: 88 p. [In Russian].

6. Scott W., Sellmann P., Hunter J. Geophysics in the study of permafrost. Geotechnical and Environmental Geophysics. Ward S. (Ed.) Society of Exploration Geophysics Tulsa. 1990: 355–384.

7. Zykov Iu.D. Geofizicheskie metody issledovaniia kriolitozony. Geophysical methods for cryolithozone study. Moscow: MSU publishing house, 2007: 272 p. [In Russian].

8. Kneisel C., Hauck C., Fortier R., Moorman B. Advances in geophysical methods of permafrost investigations. Permafrost and Periglacial Processes. 2008, 19: 157–178.

9. Hauck C., Kneisel C. Applied geophysics in periglacial environments. New York: Cambridge University Press. 2008, 240: 256 p.

10. Wetterich S., Kuzmina S., Andreev A.A., Kienast F., Meyer H., Schirrmeister L., Kuznetsova T., Sierralta M. Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, northeast Siberia, Russia. Quaternary Science Reviews. 2008, 27, 15–16: 1523–1540.

11. Popov A.I. Podzemnyi led. Subsurface ice. Moscow: MSU publishing house, 1965: 7–39. [In Russian].

12. Kaplina T.N. Zonal’nye zakonomernosti rasprostraneniia poligonal’no-zhil’nykh obrazovanii v Vostochnoi Sibiri. Paleokriologiia v chetvertichnoi stratigrafii i paleogeografii. Zonal patterns of distribution of polygonal cavern-load formations in Eastern Siberia. Paleocryology in Quaternary stratigraphy and paleogeography. Moscow: Nauka, 1973: 38–50. [In Russian].

13. Solomatin V.I. Stroenie i genezis poligonal’nozhil’nogo l’da v pleistotsenovykh otlozheniiakh severnoi Iakutii.Structure and genesis of polygonal cavern-load ice in the Pleistocene sediments of northern Yakutia. Problemy kriolitologii. Problems of cryolithology 1974, 4: 7–99. [In Russian].

14. Washburn A.L. Geocryology – A Survey of Periglacial Processes and Environments. London, UK: Edward Arnold Ltd., 1979: 406 p.

15. Tomirdiaro S.V. Lessovo-ledovaia formatsiia Vostochnoi Sibiri v pozdnem pleistotsene i golotsene. Loess-Ice formation of Eastern Siberia in the Late Pleistocene and Holocene. Moscow: Nauka, 1980: 185 p. [In Russian].

16. Gilbert G.L., Kanevskiy M., Murton J.B. Recent advances (2008–2015) in the study of ground ice and cryostratigraphy. Permafrost and Periglacial Processes. 2016, 27, 4: 377–389.

17. Mel’nikov V.P., Gladkii K.V., Lobanov A.M. Vliianie poverkhnostnykh geologicheskikh neodnorodnostei na izmeneniia gravitatsionnogo i magnitnogo polei. Obzornaia informatsiia. Razvedochnaia geofizika. Influence of surface geological inhomogeneities on changes in the gravitational and magnetic fields. Survey information. Exploration Geophysics. 1974, 64: 139–144. [In Russian].

18. Instruktsiia po magnitorazvedke: Nazemnaia magnitnaia s”emka. Aeromagnitnaia s”emka. Gidromagnitnaia s”emka. Magnetic Instruction: Ground Magnetic Survey. Aero magnetic shooting. Hydromagnetic shooting. Ed. Yu.S. Glebovsky Leningrad: Nedra, 1981: 263 p. [In Russian].

19. Arcone S.A. Radar detection of ice wedges in Alaska. CRREL Report 82-43. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, 1982: 17 p.

20. Munroe J.S., Doolittle J.A., Kanevskiy M.Z., Hinkel K.M., Nelson F.E., Jones B.M., Shur Y., Kimbleet J.M. Application of ground penetrating radar imagery for three dimensional visualisation of near surface structures in ice rich permafrost, Barrow, Alaska. Permafrost and Periglacial Processes. 2007, 18, 4: 309–321.

21. Tsibizov L., Rusalimova O. Magnetic imaging of the Kurungnakh Island ice complex upper layer structure, Lena Delta, Russia. Near Surface Geophysics. 2017, 15, 5: 527–532.

22. Bricheva S.S. Razrabotka metodiki izucheniya kriogennykh ob”ektov pri pomoshhi georadiolokatsii. Development of cryogenic objects study method using ground penetrating radar. PhD thesis. Moscow state university, 2018: 25 p. [In Russian].

23. Tsibizov L.V. Аnomalii magnitnogo polya nad poligonal’no-zhil’nymi l’dami (na primere ledovogo kompleksa v del’te r. Leny).Magnetic field anomalies above polygonal-wedge ice (the case of ice complex in Lena delta). PhD thesis. Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences. Novosibirsk, 2018: 24 p. [In Russian].

24. Tsibizov L., Fage A., Rusalimova O., Fadeev D., Olenchenko V., Yeltsov I., Kashirtsev V. Integrated non-invasive geophysical-soil studies of permafrost upper layer and aerial highresolution photography. Russian-German Cooperation: Expeditions to Siberia in 2016, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. 2017, 709: 56–69.

25. Arcone, S.A., Lawson, D.E., Delaney, A.J., Strasser, J.C., Strasser, J.D. Ground-penetratinng radar reflection profiling of groundwater and bedrock in an area of discontinuous permafrost. Geophysics. 1998. 63 (5): 1573–1584.

26. Tsibizov L.V. Ice wedges in anomalous magnetic field: numerical modeling. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2017, 2 (112): 75–84.


Review

For citations:


Tsibizov L.V., Esin E.I., Grigorevskaya A.V., Sosnovtsev K.A. Magnetometry and ground penetrating radar in application to mapping of polygonal wedge ice of yedoma complex. Arctic and Antarctic Research. 2018;64(4):427-438. (In Russ.) https://doi.org/10.30758/0555-2648-2018-64-4-427-438

Views: 798


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)