Preview

Arctic and Antarctic Research

Advanced search

Climatic changes of thermal condition in the Kara sea at last 40 years

https://doi.org/10.30758/0555-2648-2019-65-2-125-147

Abstract

The paper discusses air (Ta) and sea surface temperature (SST) year-to-year variability due to warming of the Kara Sea, using the data from regular observations at the meteorological stations Roshydromet (GMS) in 1978–2017, NOAA optimum interpolation and reanalysis data. We use the methods of cluster, correlation analysis and Empirical Orthogonal Functions (EOF). We investigate possible cause and effect relationships of these changes with the variations of the wind field components, climatic indices and the sea ice concentration field. The cluster analysis of the three main EOF components has allowed us to identify four areas on the basis of the nature of changes of the water temperature anomalies field. The climatic changes in these areas, in the coastal and island zones of the Kara Sea have manifested themselves in the steady increase of the annual air temperature at GMS from 0,47–0,77 °C/10 years on the southwest coast to 1,33–1,49 °C/10 years in the north of the sea. This is equivalent to warming from 1,9 to 6,0 °C in the last 40 years. For the open sea the value of the Ta trend is about 1,22 °C/10 years, which corresponds to an increase in the average Ta by 4,9 °C in the last 40 years. This value is approximately 3 times greater than that for all the Northern hemisphere for the same period.

Annualy, the maximal trend was observed in November and April mainly and exceeded 2–3 °C/10 years at some of the stations. We identify anomalously warm (2016 and 2012) and anomalously cold (1978, 1979, 1992 and 1998) years: the warmest year was 2012, the coldest — 1979. Positive SST trends were observed over all the sea area during the warm period of year (to 1 °C/10 years). SST increased to 2,4 °C, which is approximately 1,5 times greater than the corresponding SST values for the Northern hemisphere. The maximum SST trend (0,4 °C/10 years) was observed in the northwest and southwest parts of the sea. From June to August the trends of SST exceed the annual ones 1,5–2 times. Interannual SST and Ta variations are characterized by close correlation links. Until approximately 1998–2004 the warming was rather insignificant, and after that the growth rate of Ta and SST increased many fold. Apparently it indicates changes in the mode and the large-scale atmospheric circulation in the early 2000s. We also observed a trend of strengthening of the southern wind during the cold period of the year and the northern one — in the warm period (0,5–0,6 m/s in 40 years). It is shown that there is a close correlation between the Ta increase and the changes in the meridional component of the wind speed during the cold period of the year for all the sea areas. For the warm period it is statistically insignificant both for Ta and SST. For the cold season we observed a contribution of the large-scale mode of atmospheric circulation into the variability of V component of the wind speed. The conribution was expressed through the indeces NAO, SCAND, Pol/EUR, AZOR, ISL and the differences of ISLSIB. For the warm season this contribution is expressed through the NAO, SCAND and AO only. For the warm period we showed statistically significant correlation between the increase in SST, Ta and the processes parametrized by the AMO, EA/WR and AZOR indeces. For the cold period the indeces are AMO, Pol/Eur, SIB and ISL SIB. The interannual variations of the sea ice concentration field are characterized by close correlation with Ta changes both in the annual cycle and during the periods of ice cover formation and evolution (= –0,7... –0,9). For these periods we showed statistically significant relationships between the first EOF mode fluctuations and two climatic indeces — AMO (= 0,5) and Pol/Eur (= 0,4). The relationships between the temporary variability of the sea ice concentration and the wind field characteristics are weaker and statistically significant only for the meridional component of the wind speed (= –0,4).

About the Authors

I. D. Rostov
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Russian Federation
Vladivostok


E. V. Dmitrieva
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Russian Federation
Vladivostok


N. I. Rudykh
V.I. Il’ichev Pacific Oceanological Institute Far Eastern Branch Russian Academy of Sciences
Russian Federation
Vladivostok


A. A. Vorontsov
All-Russian Research Institute of Hydrometeorological Information – World Data Centre
Russian Federation
Obninsk


References

1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. (eds.). United Kingdom and New York, NY, USA. Cambridge: Cambridge University Press, 2013: 1535 p.

2. Johannessen O.M., Kuzmina S.I., Bobylev L.P., Miles M.W. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation. Tellus A. 2016, 68: 28234.

3. Callaghan T. V., Johansson M., Key J., Prowse T., Ananicheva M., Klepikov A. Feedbacks and interactions: From the Arctic cryosphere to the climate system. Ambio. 2011, 40: 75–86. doi:10.1007/s13280-011-0215-8.

4. Kattsov V.M., Porfiryev B.N. Climate change in the Arctic: implications for the environment and the economy. Arktika: ekologiia i ekonomika. Arctic: Ecology and Economy. 2012, 2 (6): 66–79. [In Russian].

5. Kovalevskii D.V., Alekseev G.V., Bobylev L.P., Danilov A.I. Impacts of climate change on certain economic activities in the Arctic. Problemy Arktiki i Antarktiki.Arctic and Antarctic Research. 2012, 94 (4): 90–98. [In Russian].

6. Semiletov I., Pipko I., Gustafsson Ö., Anderson L.G., Sergienko V., Pugach S., Dudarev O., Charkin A., Gukov A., Bröder L., Andersson A., Spivak E., Shakhova N. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nature Geoscience. 2016, 9: 361–365. doi: 10.1038/NGEO2695.

7. Zakharov V.F. Pokholodanie Arktiki i ledianoi pokrov arkticheskikh morei. Cold snap of the Arctic and ice cover of the Arctic seas. Leningrad: Gidrometeoizdat, 1976: 95 p. [In Russian].

8. Polyakov I.V., Alekseev G.V., Bekryaev R.V., Bhatt Uma, Colony R.L. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 2002, 29 (18): 1878. doi: 10.1029/2001GL011111, 2002.

9. Frolov I.E., Gudkovich Z.M., Karklin V.P., Kovalev E.G., Smolianitskii V.M. Climatic changes of ice conditions in the Arctic seas of the Euroasian shelf. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2007, 75: 149–160. [In Russian].

10. Sherstiukov B.G. Regional’nye i sezonnye zakonomernosti izmenenii sovremennogo klimata. Regional and seasonal regularities of changes of the modern climate. Obninsk: GU «VNIIGMI-MTsD», 2008: 247 p. [In Russian].

11. Second Roshydromet assessment report on climate change and its consequences in Russian Federation. Ed. V.M. Kattsov, S.M. Semenov. Мoscow: Roshydromet, 2014: 1005 p. [In Russian].

12. Alekseev G.V. Proiavlenie i usilenie global’nogo potepleniia v Arktike. Manifestation and strengthening of global warming in the Arctic. Fundamental’naia i prikladnaia klimatologiia. Fundamental and applied climatology. 2015, 1: 11–26. [In Russian].

13. Rostov I.D., Dmitrieva E.V., Vorontsov A.A. Tendencies of climate changes for thermal conditions of the Laptev Sea over last 37 years. Vestnik DVO RAN. Bulletin of the Far East branch of the Russian Academy of Sciences. 2019, 1: 97–107. [In Russian].

14. Rostov I.D., Dmitrieva E.V., Vorontsov A.A. Tendencies of climate changes for thermal conditions in the coastal waters of the western Bering Sea and adjacent areas in the last decades. Izvestiya TINRO. TINRO News. 2018, 193: 167–182. doi: 10.26428/1606-9919-2018-193-167-182. [In Russian].

15. Shalina E.V., Bobylev L.P. Change of ice conditions in the Arctic according to satellite observations. Sovremennye problemy distantsionnogo zondirovaniia Zemli iz kosmosa. Current problems in remote sensing of the Earth from space. 2017, 14, 6: 28–41. [In Russian].

16. Dumanskaja I.O. Ledovye usloviia morei evropeiskoi chasti Rossii. Ice conditions of the European Russia seas. Obninsk: IG-SOCIN, 2014: 608 p. [In Russian].

17. Matishov G.G., Dzhenyuk S.L., Moiseev D.V., Zhichkin A.P. Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov. Oceanologia. 2014, 56 (3): 445–460.

18. Borodachev V.E., Borodachev I.V. The Kara Sea ice extent and the Arctic climate variations. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2015, 2 (104): 57–67. [In Russian].

19. Karklin V.P., Yulin A.V., Sharatunova M.V., Mochnova L.P. Climat variability of the Kara Sea ice massifs. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2017, 4 (114): 37–47. [In Russian].

20. Dumanskaia I.O. Ledovye usloviia morei aziatskoi chasti Rossii. Ice conditions of the seas of an Asian part of Russia. Obninsk: IG-SOTsIN, 2017: 640 p. [In Russian].

21. Karklin V.P., Kovalev E.G. Influence of solar activity on ice cover of the Arctic seas. Trudy AANII. Proc. of AARI. 1994, 432: 28–35. [In Russian].

22. Gudkovich Z.M., Karklin V.P., Frolov I.E. Intra century climate changes, areas of an ice cover Eurasian Arctic seas and their possible reasons.Meteorologiia i gidrologiia.Meteorology and hydrology. 2005, 6: 5–14. [In Russian].

23. Abdusamatov Kh.I. Solntse diktuet klimat. The sun dictates climate. St. Petersburg: Logos, 2009: 198 p. [In Russian].

24. Gudkovich Z.M., Karklin V.P., Smolyanitsky V.M., Frolov I.E. On the character and causes of the Earth’s climate changes. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2009, 1 (81): 15–23. [In Russian].

25. Sorokhtin O.G. Parnikovyi effekt: mif i real’nost’. Greenhouse effect: myth and reality. Vestnik RAEN. Bulletin of RANS. 2002, 1, 1: 8–21. [In Russian].

26. Birman B.А., Berezhnaya T.V., Golubev А.D. Osnovnye pogodno-klimaticheskie osobennosti Severnogo polushariia Zemli. 2018 god. Analiticheskii obzor. FGBU «Gidromettsentr Rossii». The main weather-climatic characteristics of the Earth northern hemisphere. 2018. Analytical review. Moscow: Hydrometeoizdat, 2019: 79 p. [In Russian].

27. Alekseev G.V., Radionov V.F. Aleksandrov E.I.,Ivanov N.E., Kharlanenkova N.E. Arctic climate change under global warming. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2015, 1 (103): 33–41. [In Russian].

28. Ashik I.M., Timokhov L.A. The expected changes of hydrological conditions in the Arctic seas and their consequences. Book of abs. All-Russian conf. “State of the Arctic seas and territories in the face of climate change”. Ed. Riabchenko S.V., North (Arctic) Federal M.V. Lomonosov’ University. Arkhangelsk: SAFU ID, 2014: 25–26. [In Russian].

29. Loginov V.F., Mikutskii V.S. Izmeneniia klimata: trendy, tsikly, pauzy. Climate change: trends, cycles, pause. Minsk: Belaruskaia navuka, 2017: 179 p. [In Russian].

30. Ponomarev V.I., Dmitrieva E.V, Shkorba S.P., Karnaukhov А.А. Change of the global climate regime at the turn of the XX–XXI centuries. Vestnik MGTU. Bulletin of MGTU. 2018, 21, 1: 160–169. doi: 10.21443/1560-9278-2018-21-1-160-169. [In Russian].

31. Frolov I.E., Gudkovich Z.M., Karklin V.P., Smolyanitsky V.М. Climate change in the Arctic and Antarctic — the result of the natural causes. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2010, 2 (85): 52–61. [In Russian].

32. Alekseev G.V., Kuzmina S.I., Urazgil’deeva A.V., Bobylev L.P. Influence of atmospheric transfers of heat and moisture on warming in the Arctic during the winter period. Fundamental’naia i prikladnaia klimatologiia. Fundamental and applied climatology. 2016, 1: 43–46. doi: 10.21513/2410-8758-2016-1-43-63. [In Russian].

33. Popova V.V. Present-day changes in climate in the North Eurasia as a manifestation of variation of the large-scale atmospheric circulation. Fundamental’naia i prikladnaia klimatologiia. Fundamental and applied climatology. 2018, 1: 84–111. doi: 10.21513/2410-8758-2018-1-84-111. [In Russian].

34. Graversen R.G., Mauritsen T., Tjernstrom M., Kallen E., Svensson G. Vertical structure of recent Arctic warming. Nature. 2008, 451: 53–54. doi: 10.1038/nature06502.

35. Curry J.A., Schramm J.H., Ebert E.E. Sea ice albedo feedback mechanism. Journ. Clim. 1995, 8: 240–247.

36. Perovich D. K., Light B., Eicken H., Jones K.F., Runciman K., Nghiem S.V. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice-albedo feedback. Geophys. Res. Lett. 2007, 34: L19505. doi:10.1029/2007GL031480.

37. Semiletov, I., O. Dudarev, V. Luchin, A. Charkin, K.-H. Shin, and N. Tanaka The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. 2005, 32: L10614. doi:10.1029/2005GL022490.

38. Magritskii D.V. Thermal drain of the rivers to the seas of the Russian Arctic and its change.Vestn. MGU. Cer. 5 Geografiia.MSU bulletin. Geography series 5. 2009, 5: 69–77. [In Russian].

39. Luchin V., Paneled G. Thermal regimes in the Chukchi sea from 1941–2008. Deep Sea Research Part II: Topical Studies in Oceanography. 2014, 109: 14–26. doi: 10.1016/j.dsr2.2014.05.007.

40. Aksenov P. V., Ivanov V. V. “Atlantification” as a probable cause for reducing of the sea-ice cover in the Nansen basin in winter. Problemy Arktiki i Antarktiki.Arctic and Antarctic Research. 2018, 64, 1: 42–54. doi: 10.30758/0555-2648-2018-64-1-42-54. [In Russian].

41. Beliazo V.A. Planetary cycles in fluctuations of atmospheric circulation and their manifestation in some processes of the Arctic. Trudy AANII. Proc. of AARI. 1999, 441: 46–51. [In Russian].

42. Frolov I.E., Gudkovich Z.M., Karklin V.P., Smolianitskii V.M. 60-year cycle in climate change in the polar regions. Materialy gliatsiologicheskikh issledovanii. Materials of glaciological researches. 2008, 105: 158–165. [In Russian].

43. Dobrovolsky A.D., Zalogin B.S. Morya SSSR. Sea of the USSR. Moscow: MGU, 1982: 192 p. [In Russian].

44. Izmenchivost’ prirodnykh uslovii v shel’fovoi zone Barentseva i Karskogo morei. Variability of an environment in a shelf zone Barents and Karsky seas (Eds. Danilov A.I., Mironov E.U., Spichkin V.A.). Saint Petersburg: AANII, 2004: 430 p. [In Russian].

45. Reynolds R.W., Rayner N.A., Smith T.M., Stokes D.C, Wang W. An improved in situ and satellite SST analysis for climate. Journal of Climate. 2002, 15, 13: 1609–1625. doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

46. Kalnay E., Kanamishi M., Kistler R., Collins W., Deaven D., Gardin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Chellian M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang G., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 1996, 77, 3: 437–472. doi: 10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2.

47. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C., Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108 (D14): 4407. doi: 10.1029/2002JD002670.

48. Ding С., He Х. K-means clustering via principal component analysis. Proc. 21st Intern. Conf. on machine learning. Banff, Canada, ACM Press, 2004: 225–232. doi: 10.1145/1015330.1015408.

49. Enfield D.B., Mestas-Nunez A.M., Trimble P.J. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophysical Research Letters. 2001, 28, 10: 2077–2080.

50. Ivanov V., Alexeev V., Koldunov N.V., Repina I.A., Sandoe A.B., Smedsrud L.H., Smirnov A. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J. Phys. Oceanogr. 2016, 46: 1437–1456. doi: 10.1175/JPO-D-15-0144.1.

51. Zhichkin A.P. Dynamics of interannual and seasonal anomalies of ice cover of the Barents and Karsky seas. Vestnik Kol’skogo nauchnogo tsentra RAN. Estestvennye i tekhnicheskie nauki. Bulletin of the Kola scientific center RAS. Natural and technical science. 2015,1 (20): 55–64. [In Russian].

52. Plotnikov V.V. The spatial-temporal variability of the ice cover of Peter the Great Bay. Vestnik DVO RAN. FEB RAS Bulletin. 2013, 6: 42–49. [In Russian].


Review

For citations:


Rostov I.D., Dmitrieva E.V., Rudykh N.I., Vorontsov A.A. Climatic changes of thermal condition in the Kara sea at last 40 years. Arctic and Antarctic Research. 2019;65(2):125-147. (In Russ.) https://doi.org/10.30758/0555-2648-2019-65-2-125-147

Views: 6540


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)