Preview

Arctic and Antarctic Research

Advanced search

Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica

https://doi.org/10.30758/0555-2648-2019-65-2-169-185

Abstract

The data on snow the temperature which was monitored to a depth of 10 m in the vicinity of Vostok Station by the TAUTO autonomous system in 2010–2017 are presented. By analyzing seasonal temperature variations at different depth with the aid of a heat-transfer model we have inferred a relationship between relative thermal conductivity of snow and its porosity at this site. The same approach was also applied to analyze similar data obtained at Dome Fuji station in 1995–1997. It was found that the thermal conductivity of snow layers with identical density is noticeably lower at Dome Fuji than at Vostok, which point to a difference in structural characteristics of snow that determine its thermophysical properties. We demonstrate that the conduction is the dominant heat-transport mechanism which controls the temperature distribution in snow pack on the Antarctic plateau. The obtained parameters of the heat-transfer model can be used for reconstructing the past surface temperature variations from the long-term temperature measurements in the upper 100 m thick layer of the ice sheet.

About the Authors

Yu. A. Shibayev
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



K. B. Tchikhatchev
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



V. Ya. Lipenkov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



A. A. Ekaykin
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Institute of Earth Sciences, Saint Petersburg State University
Russian Federation

St. Petersburg



E. Lefebvre
Institut des Géosciences de l’Environnement
France
Grenoble


L. Arnaud
Institut des Géosciences de l’Environnement
France
Grenoble


J.-R. Petit
Institut des Géosciences de l’Environnement
France
Grenoble


References

1. Cuffey K.M., Alley R.B., Grootes P.M., Bolzan J.M., Anandakrishnan S.Calibration of the δ18 O isotopic paleothermometer for central Greenland, using borehole temperatures. Journal of Glaciology. 1994, 40, 135: 341–349.

2. Johnsen S., Dahl-Jensen D., Dansgaard W., Gundestrup N. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus B: Chemical and Physical Meteorology. 1995, 47, 5: 624–629. doi: 10.3402/tellusb.v47i5.16077.

3. Salamatin A.N., Lipenkov V.Ya., Barkov N.I., Jouzel J., Petit J.R., Raynaud D. Ice-core age dating and palaeothermometer calibration based on isotope and temperature profiles from deep boreholes at Vostok Station (East Antarctica). Journal of Geophysical Research. 1998, 103, D8: 8963–8977.

4. Brandt R.E., Warren S.G. Temperature measurements and heat transfer in near-surface snow at the South Pole. Journal of Glaciology. 1997, 43, 144: 339–351.

5. Riche F., Schneebeli M. Thermal conductivity of snow measured by three independent methods and anisotropy considerations. The Cryosphere. 2013, 7: 217–227. doi:10.5194/tc–7–217–2013.

6. Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journal of Glaciology. 1997, 43, 143: 26–41.

7. Calonne N., Flin F., Morin S., Lesaffre B., Rolland du Roscoat S., Geindreau C. Numerical and experimental investigations of the effective thermal conductivity of snow. Geophysical Research Letters. 2011, 38: L23501. doi:10.1029/2011GL049234.

8. Morin S., Domine F., Arnaud L., Picard G. In-situ monitoring of the time evolution of the effective thermal conductivity of snow. Cold Regions Science and Technology. 2010, 64: 73–80.

9. Lefebvre E., Arnaud L., Ekaykin A.A., Lipenkov V.Ya., Picard G., Petit J.-R. Snow temperature measurements at Vostok station from an autonomous recording system (TAUTO): preliminary results from the first year operation. Led i Sneg. Ice and Snow. 2012, 4 (120): 138–145.

10. Salamatin A.N., Shiraiwa E., Murav’ev Ya.D., Ziganshin M.F. Heat transfer in seasonal active layer of Gorshkov Ice Cap, Ushkovskiy Volcano summit, Kamchatka. Materialy gliatsiologicheskikh issledovanii. Data of Glaciological Studies. 2001, 90: 100–106. [In Russian].

11. Salamatin A.N., Muravyev Y.D., Shiraiwa T., Matsuoka K. Modeling Dynamics of Glaciers in Volcanic Craters. Journal of Glaciology. 2000, 46, 153: 177–187.

12. Hobbs P.V. Ice Physics. Oxford: Clarendon Press, 1974: 804 p.

13. Slack G.A. Thermal conductivity of ice. Physical Review B. 1980, 22, 6: 3065–3071.

14. Salamatin A.N. Paleoclimatic reconstructions based on borehole temperature measurements in ice sheets. Possibilities and limitations. Physics of Ice Core Records. Sapporo: Hokkaido University Press, 2000: 243–282.

15. Hondoh T., Narita H., Hori A., Fujii M., Shoji H., Kameda T., Mae S., Fujita S., Ikeda T., Fukazawa H., Fukumura T., Azuma N., Wang Y., Kawada K., Watanabe O., Motoyama H. Basic analyses of Dome Fuji deep ice core Part 2: Physical properties. Proc. NIPR Symp. Polar Meteorol. Glaciol. 1999, 13: 90–98.

16. Lipenkov V.Ya., Shibaev Yu.A., Salamatin A.N., Ekaykin A.A., Vostretsov R.N., Preobrazhenskaya A.V. Current climate changes recorded in ice temperature variations in upper 80-m layer, Vostok station area. Materialy gliatsiologicheskikh issledovanii. Data of Glaciological Studies. 2004, 97: 44–56. [In Russian].

17. JARE Data Reports № 223, Glaciology, 26. National Institute of Polar Research, 1997: 49–66.

18. JARE Data Reports № 234, Glaciology, 27. National Institute of Polar Research, 1998: 15–33.

19. Krass M.S., Merzlikin V.G. Radiacionnaja teplofizika snega i l’da. Radiation thermophysics of snow and ice. Leningrad: Hydrometeoizdat, 1990: 264 p. [In Russian].

20. Voytkovskiy K.F., Golubev V.N., Lapteva N.I., Troshkina E.S., Ushakova L.A., Pavlov A.V. Mass transport and metamorphism in snow cover. Materialy gliatsiologicheskikh issledovanii. Data of Glaciological Studies. 1976, 25: 146–152. [In Russian].

21. Van Ommen T.D., Morgan V.I., Jacka T.H., Woon S., Elcheikh A. Near-surface temperatures in the Dome Summit South (Law Dom, East Antarctica) borehole. Annals of Glaciology. 1999, 29: 141–144.

22. Pavlov A.V. Teplofizika landshaftov. Thermal physics of landscapes. Novosibirsk: Nauka, 1979: 285 p. [In Russian].

23. Osokin N.I., Sosnovskiy A.V., Chernov R.A. Effective thermal conductivity of snow and its variations. Kriosfera Zemli. Earth’s Cryosphere. 2017. XXI, 3: 60–68. [In Russian].


Review

For citations:


Shibayev Yu.A., Tchikhatchev K.B., Lipenkov V.Ya., Ekaykin A.A., Lefebvre E., Arnaud L., Petit J. Seasonal variations of snowpack temperature and thermal conductivity of snow in the vicinity of Vostok station, Antarctica. Arctic and Antarctic Research. 2019;65(2):169-185. (In Russ.) https://doi.org/10.30758/0555-2648-2019-65-2-169-185

Views: 893


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)