Unique geological structures of the Law Dome and Vanderford and Totten glaciers region (Wilkes Land) distinguished by geophysical data
https://doi.org/10.30758/0555-2648-2019-65-2-212-231
Abstract
Wilkes Land is a key region for Gondwana reconstruction, however it remains one of the largest regions on Earth with poorest knowledge of geology. This study comprehensively reviews the ICECAP/ IceBridge geophysical data for the Law Dome region including Vanderford and Totten adjacent glaciers over Wilkes Land and their role in obtaining new insight on the East Antarctic geology hidden under the ice cover. We analyzed more than 100,000 line kilometers of new magnetic, gravity and subglacial bedrock topography data that are available through the National Snow and Ice Data Center (USA). The newly acquired data supports our previous idea of the continuous rift structure existence at the southern boundary of Law Dome that runs between Vanderford and Totten Glaciers. The rift length exceeds 400 km and width varies from 50 to 100 km. In accordance with results of depth to Moho estimations and density modelling, for axial part of the rift it is characteristic an essential thinning of the Earth crust thickness, it is raised up to 24–26 km and continue to be elevated along entire length of this structure. The thickness of sedimentary rocks within the rift exceeds 3 km, their high density probably evidence that they were formed during Late Paleozoic – Early Mesozoic. The results of our investigations support tectonic nature of this structure as continuous rift developed since the Mesozoic extension phase (~160 Ma) of the Wilkes Land continental margin. Second distinctive structure is the strong reversely magnetized Law Dome magnetic anomaly with an area of about 9,500 km2. This anomaly would map out one of the largest mafic/ultramafic intrusions of the Earth, similar in extent to Norway’s Bjerkreim-Sokndal layered intrusion, the Coompana Block gabbro in Australia, or even the granitic-gneiss complex in the Adirondack Mountains of North America.
About the Authors
D. A. GolynskyRussian Federation
A. V. Golynsky
Russian Federation
References
1. Fitzsimons I.C.W. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. Proterozoic East Gondwana: supercontinent assembly and breakup. Yoshida, M. et al. (eds). Geological Society of London. 2003, 206: 93–130.
2. Grikurov G.E., Leychenkov G.L. Tectonic Map of Antarctica. 1: 10 M Scale, CGMW, Paris. 2012. 1 Sheet. Available at: https://ccgm.org/en/catalogue/125-carte-tectonique-de-lantarctique-9782917310151.html (accessed 27.06.2019).
3. Glebovsky Ju.S. Main results of small scale magnetic survey carried out to the south from the Shackleton Ice Shelf. Biulleten’ Sovetskoi antarkticheskoi ekspeditsii.Bulletin of Soviet Antarctic Expedition. 1959, 12: 37–40. [In Russian].
4. Blankenship D.D., Kempf S., Young D. IceBridge HiCARS 2 L2 Geolocated Ice Thickness. Version 2. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. 2012. Available at: http://nsidc.org/data/ir2hi2.html (accessed 13.06.2019).
5. Blankenship D.D., Kempf S., Young D. IceBridge Geometrics 823A Cesium Magnetometer L2 Geolocated Magnetic Anomalies. Version 1. [2011_AN_UTIG]. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. 2012. doi:10.5067/TO7WLC72UMAQ.
6. Aitken A.R.A., Young D.A., Ferraccioli F., Betts P.G., Greenbaum J.S., Richter T.G. et.al. The subglacial geology of Wilkes Land, East Antarctica. Geophysical Research Letters. 2014, 41: 2390–2400. doi:10.1002/2014GL059405.
7. Lindsay T. Gravity and Elevation Data Acquisition in the Casey Region. Australian Antarctic Data Centre. 2000. doi:10.4225/15/583bbca96e2fd.
8. Davis E.R., Jones D.J., Morgan V.I., Young N.W. A survey of the Vanderford and Adams Glaciers in East Antarctica. Annals of Glaciology. 1986, 8: 197–197.
9. Young N., Malcolm P., Mantell P. Mass flux and dynamics of Totten Glacier, Antarctica. Annals of Glaciology. 1989, 12: 219–219.
10. Jezek K.C. Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Annals of Glaciology. 1999, 29: 286–290. doi:10.3189/172756499781820969.
11. Golynsky A.V., Golynsky D.A. Rifts in the tectonic structure of East Antarctica.Nauchnye rezul’taty rossiiskikh geologo-geofizicheskikh issledovanii v Antarktike.Russian Earth Science Research in Antarctica. Collection of papers. V. 2. St. Petersburg: VNIIOkeangeologia, 2009: 132–162. [In Russian].
12. Golynsky D.A., Golynsky A.V. East Antarctic Rift Systems – key to understanding of Gondwana break-up. Regional’naia geologiia i metallogeniia. Regional geology and metallogeny. 2012, 52: 58–72. [In Russian].
13. Reading A.M. The seismic structure of Precambrian and early Palaeozoic terranes in the Lambert Glacier region, East Antarctica. Earth and Planetary Science Letters. 2006, 244: 44–57. doi:10.1016/j.epsl.2006.01.031.
14. Chen X., Shearer P.M., Walter F., Fricker H.A. Seventeen Antarctic seismic events detected by global surface waves and a possible link to calving events from satellite images. Journal of Geophysical Research. 2011, 116. B06311. doi:10.1029/2011JB008262.
15. Werner S. Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska Undersok, ser C.C. Årsbok. 1953, 43, 6: 130 p.
16. Oasis montaj how-to guide. Complete workflow for Oasis montaj, Toronto, Ontario, Canada, Geosoft Inc. 2014: 260 p. Avaible at: http://updates.geosoft.com/downloads/files/how-to-guides/Oasis_montaj_Complete_Workflow.pdf (accessed 01.07.2019).
17. Fretwell P., et al. Bedmap2: improved ice bed, surface and thickness datasets of Antarctica // Cryosphere. 2013, 7: 375–393. doi:10.5194/tc-7-375-2013.
18. Volnukhin V.S., Kurinin R.G. Physical properties of rocks from the Lambert Glacier area. Geofizicheskie issledovaniia v Antarktide. Geophysical investigation in Antarctica. Gaponenko, G.I., Grikurov G.E. and Masolov V.N (Eds.) Leningrad: Sevmorgeologiia, 1980: 52–58. [In Russian].
19. Golynsky A.V., Golynsky D.A., Ferraccioli F., Jordan T.A., Blankenship D.D., Holt J. et al. ADMAP-2: Magnetic anomaly map of the Antarctic. (Map 1, scale 1:10 000 000). Incheon, Korea: Polar Research Institute. 2017. doi:10.22663/ADMAP.V2.
20. Golynsky A.V., Alyavdin S.V., Masolov V.N., Tscherinov A.S., Volnukhin V.S. The composite magnetic anomaly map of the East Antarctica. Tectonophysics. 2002, 347: 109–120. doi:10.1016/S0040-1951(01)00240-2.
21. Golynsky A.V., Ivanov S.V., Kazankov A.Ju., Jokat W., Masolov V.N., von Frese R.R.B. and the ADMAP Working Group. New continental margin magnetic anomalies of East Antarctica. Tectonophysics. 2013, 585: 172–184. doi: 10.1016/j.tecto.2012.06.043.
22. Leitchenkov G., Guseva J., Gandyukhin V., Grikurov G., Kristoffersen Y., Sand M., Golynsky A., Aleshkova N. Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Marine Geophysical Researches. 2008, 29 (2): 135–158. doi:10.1007/s11001-008-9051-z.
23. Golynsky A.V., Ferraccioli F., Hong J.K., Golynsky D.A., von Frese R.R.B., et al. New magnetic anomaly map of the Antarctic. Geophysical Research Letters. 2018, 45: 6437–6449. doi:10.1029/2018GL078153.
24. Studinger M., Bell R.E., Buck W.R., Karner G.D., Blankenship D.D. Sub-ice geology inland of the Transantarctic Mountains in light of new aerogeophysical data. Earth and Planetary Science Letters. 2004, 220: 391–408. doi:10.1016/10.1016/S0012-821X(04)00066-4.
25. Choi S. 3-D Aeromagnetic modelling in the Grubergebirge area, central Dronning Maud Land, East Antarctica. GEOMAUD, Vol. 2, Geophysical Results. H.-J. Paech (ed.). Hannover: Geologisches Jahrbuch Reihe B, B 97, 2005: 101–108.
26. Ferraccioli F., Armadillo E., Jordan T., Bozzo E., Corr H. Aeromagnetic exploration over the East Antarctic Ice Sheet: A new view of the Wilkes Subglacial Basin. Tectonophysics. 2009, 478 (1–2): 62–77. doi:10.1016/j.tecto.2009.03.013.
27. LeMasurier W.E. Late Cenozoic volcanism on the Antarctic plate: an overview. Volcanoes of the Antarctic plate and southern oceans. Edited by W.E. LeMasurier, J.W. Thomson. Antarctic Research Series. 48, American Geophysical Union, Washington, DC. 1990: 1–19.
28. Bosum W., Damaske D., Roland N.W., Behrendt J., Saltus R. The GANOVEX IV Victoria Land/ Ross Sea aeromagnetic survey: interpretation of anomalies, in German Antarctic North Victoria Land Expedition 1984/85, GANOVEX IV, edited by D. Damaske and H.-J. Dürbaum. Geologisches Jahrbuch Reihe. 1989, E 38. Hannover: 153–230.
29. McEnroe S.A., Robinson P., Panish P. Aeromagnetic anomalies, magnetic petrology and rock magnetism of hemo-ilmenite- and magnetite-rich cumulates from the Sokndal region, South Rogaland, Norway. American Mineralogist. 2001, 86 (11–12): 1447–1468. doi:10.2138/am-2001-11-1213.
30. Harrison R.J., Dunin-Borkowski R.E., Putnis A. Direct imaging of nanoscale magnetic interactions in minerals. Proceedings of the National Academy of Sciences. U.S.A. 2002, 99: 16556–16561.
31. Flint R.B., Daly S.J. Coompana Block. The geology of South Australia — Volume 1: The Precambrian. J.F. Drexel, W.V. Preiss, and A.J. Parker (eds.). Geological Survey of South Australia. 1993, 54: 168–169.
32. Foss C., Reed G., Heath P., Dutch R., Wise T. Investigation of the Coompana negative magnetic anomaly in southwestern South Australia. AESC Abstracts, 26–30 June. 2016, Adelaide Convention Centre, № 149. Available at: www.aesc2016.gsa.org.au (accessed 27.06.2019).
33. Wise T., Pawley M., Dutch R. Preliminary interpretation from the 2015 Coompana aeromagnetic survey. MESA Journal. 2015, 79 (4): 22–30. doi:10.1071/ASEG2016ab191.
34. Dutch R.A., Pawley M.J., Wise T.W., Tylkowski L., Lockheed A., McAlpine S.R.B., Heath P. PACE Copper Coompana Drilling Project: Drillhole CDP005 preliminary field-data report. Report Book 2017/00041. Adelaide: Geological Survey of South Australia, Resources and Energy Group, Department of the Premier and Cabinet. 2017: 21 p.
35. Zengerer M. Coompana Anomaly Revisited. Gondwana Geoscience. 2017. Available at: http://www.gondwanageo.com/ (accessed 27.06.2019).
36. Nedosekova I.L. Age and sources of substances of Ilmeno-Vishnevogorskogo alkali complex (Ural, Russia): Geochemical and isotopic Rb-Sr, Sm-Nd, U-Pb, Lu-Hf data. Litosfera. Lithosphere. 2012, 5: 77–95. [In Russian].
37. Hall C.E., Cooper A.F., Parkinson D.L. Early Cambrian carbonatite in Antarctica. Journal of the Geological Society. 1995, 152: 721–728. doi:10.1144/gsjgs.152.4.0721.
38. Dortman N.B. Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (petrofizika). In Spravochnik geofizika.Physical properties of rocks and mineral resources (petrophysics). Reference book of geophysicist. Moscow: Nedra, 1984: 456 p. [In Russian].
39. McEnroe S.A., Brown L.L. A closer look at remanence-dominated aeromagnetic anomalies: Rock magnetic properties and magnetic mineralogy of the Russell Belt microcline-sillimanite gneiss, northwest Adirondack Mountains. Journal of Geophysical Research. 2000, 105, B7: 16437–16456. doi:10.1029/2000JB900051.
Review
For citations:
Golynsky D.A., Golynsky A.V. Unique geological structures of the Law Dome and Vanderford and Totten glaciers region (Wilkes Land) distinguished by geophysical data. Arctic and Antarctic Research. 2019;65(2):212-231. (In Russ.) https://doi.org/10.30758/0555-2648-2019-65-2-212-231