Preview

Arctic and Antarctic Research

Advanced search

PC index as a proxy of the solar wind energy that entered into the magnetosphere (summary)

https://doi.org/10.30758/0555-2648-2019-65-3-275-299

Abstract

The paper includes a short review of advantages of the PC index which is a characteristic of the magnetic activity in the polar caps in the northern (PCN) and southern (PCS) hemispheres. It is demonstrated that the PC index properly responds to variations of the geoeffective interplanetary electric field E coupling with the magnetosphere, on the one side, and predetermined the development of magnetospheric disturbances (magnetic storms and substorms), on the other side. These experimental results formed the physical backgrounds for concept that the ground-based PC index characterizes the solar wind energy input into the magnetosphere. It is shown that problem of random discordances in behavior and value of the PCN and PCS indices during the summer/winter seasons is easily solved by choosing the PC index in the winter polar cap (PCwinter) as the best characteristic of the polar cap magnetic activity. At present the PC index is successfully applied to validate the utility of SW data presented at OMNI website (i.e. to verify whether or not the solar wind, measured in the Lagrange point, encountered the magnetosphere in reality). A special procedure agreed by the Arctic and Antarctic Research Institute (responsible for production of PCS index) and DTU Space (responsible for production of PCN index) ensures the calculation of the 1-min PC indices in quasi-real time based on data of magnetic observations at the polar cap stations Vostok (Antarctic) and Qaanaaq (Greenland).

About the Authors

O. A. Troshichev
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg.


D. A. Sormakov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg.


References

1. Newell P.T., Sotirelis T., Liou K., Meng C.I., Rich F.J. A nearly universal solar wind–magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res. 2007, 112: A01206. doi:10.1029/2006JA012015.

2. Newell P.T., Sotirelis T., Liou, Rich F.J. Pairs of solar wind-magnetosphere coupling functions: combining a merging term wih a viscous term works best. J. Geophys. Res. 2008, 113: A04218. doi:10.1029/2007JA012825.

3. Troshichev O.A., Andrezen V.G. The relationship between interplanetary quantities and magnetic activity in the southern polar cap. Planet Space Sci. 1985, 33: 415–419.

4. Troshichev O.A., Andrezen V.G., Vennerstrøm S., Friis-Christensen E. Magnetic activity in the polar cap – A new index. Planet Space Sci. 1988, 36: 1095–1102.

5. Obayashi T. The interaction of solar plasma with geomagnetic field, disturbed conditions. Solar terrestrial physics, eds King J.W. London: Newman W.S. Academic Press, 1967: 107.

6. Nishida A. Geomagnetic DP2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 1968a, 73: 1795–1803.

7. Nishida A. Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 1968b, 73: 5549–5559.

8. Nishida A. Interplanetary origin of electric fields in the magnetosphere. Cosmic Electrodyn. 1971, 2: 350–374.

9. Troshichev O.A. Polar magnetic disturbances and field-aligned currents. Space Sci. Rev. 1982, 32: 275–360.

10. Langel R.A. Relation of variations in total magnetic field at high latitude with parameters of the IMF and with DP2 fluctuations. J. Geophys. Res. 1975, 80: 1261–1270.

11. McDiarmid I.B., Burrows J.R., Wilson M.D. Reverse polarity field-aligned currents at high latitudes. J. Geophys. Res. 1977, 82: 1513–1518.

12. Iijima T., Potemra T.A. The relationship between interplanetary quantities and Birkeland current densities. Geophys. Res. Lett. 1982, 4: 442–445.

13. Bythrow P.F., Potemra T.A. The relationship of total Birkeland currents to the merging electric field. Geophys. Res. Lett. 1983, 10: 573–576.

14. Kan J.R., Lee L.C. Energy coupling function and solar wind-magnetosphere dynamo. Geophys. Res. Lett. 1979, 6: 577–580.

15. Troshichev O., Janzhura A., Stauning P. Unified PCN and PCS indices: Method of calculation, physical sense and dependence on the IMF azimuthal and northward components. J. Geophys. Res. 2006, 111: A05208. doi:10.1029/2005JA011402.

16. Troshichev O., Janzhura A. Space weather monitoring by ground-based means: PC index. Springer, Berlin: Heidelberg Verlag, 2012: 288 p. doi:10.1007/978-3-642-16803-1.

17. Akasofu S.I. The development of the auroral substorms. Planet Space Sci. 1964, 12: 273–282.

18. Davis T.N., Sugiura M. Auroral electrojet activity AE and its universal time variations. J. Geophys. Res. 1966, 71: 785–798.

19. Troshichev O.A. Polar cap magnetic activity (PC index) and space weather monitoring. Editions universitaires europeennes, 2017: 140 p.

20. Troshichev O., Sormakov D., Behlke R. Relationship between PC index and magnetospheric field-aligned currents measured by Swarm satellites. J. Atmos. Solar-Terr. Phys. 2018, 168: 37–47. doi.org/10.1016/j.jastp.2017.12.020.

21. Ritter P., Lühr H., Rauberg. Determining field-aligned currents with the Swarm constellation mission. Earth Planets Space. 2013, 65: 1285–1294. doi:10.5047/eps.2013.09.006.

22. Lühr H., Park J., Gjerloev J.W., et al. Field-aligned currents’ scale analysis performed with the Swarm constellation. Geophys. Res. Lett. 2015, 42: 1–8, doi:10.1002/2014GL062453.

23. Zmuda A.J., Armstrong J.C. The diurnal flow pattern of field-aligned currents. J. Geophys. Res. 1974, 79: 4611–4519.

24. Iijima, T., Potemra T.A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 1976a, 81: 2165–2174.

25. Iijima T., Potemra T.A. Field-aligned currents in the day-side cusp observed by Triad. J. Geophys. Res. 1976b, 81: 5971–5979.

26. Chapman S., Ferraro V.C. A new theory of magnetic storms: I. Initial phase. Terr. Magn. Atmos. Elec. 1932, 37: 147–156.

27. Stepanova M., Antonova E., Troshichev O. Prediction of Dst variations from Polar Cap indices using time-delay neural network. J. Atmos. Solar-Terr. Phys. 2005, 67: 1658–1664.

28. Richardson I., Cane H. List of Near-Earth Interplanetary Coronal Mass Ejections (ICME) for 1997–2015 (Catalogue). 2015.

29. 29 Jian L. List of Stream Interaction Regions (SIR) for 1995–2009 (Catalogue). 2009.

30. Vokhmyanin M.V., Stepanov N.A., Sergeev V.A. On the evaluation of data quality in the OMNI interplanetary magnetic field database. Space Weather. 2019, 17: 476–486. doi. org/10.1029/2018SW/002113.

31. Du A.M., Tsurutani B.T., Sun W. Anomalous geomagnetic storm of 21-22 January 2005: A storm main phase during northward IMF. J. Geophys. Res. 2008, 113: A10214. doi: 10.1029/2006JA013284.

32. Lee D.Y., Choi K.C., Ohtani S., Lee J.H., Kim K.C., Park K.S., Kim K.H. Can intense substorms occur under northward IMF conditions? J. Geophys. Res. 2010, 115: A01211. doi: 10.1029/2009JA014480.

33. Troshichev O.A., Sormakov D.A. PC index as a proxy of the solar wind energy that entered into the magnetosphere: 4. Relationship between the solar wind dynamic pressure (PSW) impulses and PC, AL indices. J. Atmos. Solar-Terr. Phys. 2019, 182: 200–210. doi.org/10.1016/j.jastp.2018.12.001.


Review

For citations:


Troshichev O.A., Sormakov D.A. PC index as a proxy of the solar wind energy that entered into the magnetosphere (summary). Arctic and Antarctic Research. 2019;65(3):275-299. https://doi.org/10.30758/0555-2648-2019-65-3-275-299

Views: 869


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)