Preview

Arctic and Antarctic Research

Advanced search

The variability of ice conditions along the Northern sea route for the period 1997–2018

https://doi.org/10.30758/0555-2648-2019-65-3-328-340

Abstract

The paper discusses the methodology and results of electronic ice charts processing. The charts taken from AARI archive. The Barents, Kara, Laptev, East Siberian and Chukchi seas Ice maps reflect ice conditions for the period from 1997 to 2018 for the April-May inter-annual interval. The total stage lengths of «Sabetta – the Kara Gate –Murmansk» and «Sabetta – the Vilkitski Strait – the Bering Strait» standard routes were calculated at certain conditions of ice navigation. The route “Sabetta – the Bering Strait” was divided into sections within the Kara sea, Laptev Sea, East Siberian and Chukchi Seas for analysis. The purpose of the study is to obtain the values of the length of the routes in different categories of ice and to analyze changes trend of navigation in ice conditions for the period 1997-2018. The series were checked for the presence of trends using the integral curves method. The homogeneity of the series was checked using Wilcoxon - Mann-Whitney and Siegel - Tukey rank non-parametric criteria. Most of the series proved to be non-homogeneous. The following conclusions were made: there was some improvement of ice navigation conditions along the route Sabetta ‒ the Kara Gate – Murmansk due to the decrease of the route length in hard ice conditions. The ice navigation conditions along the Sabetta ‒ the Bering Strait route changed little, if at all, the navigation conditions along the route within the Kara Sea and the Laptev Sea have changed for the worse, and within the East Siberian Sea ice conditions scarcely changed. Some slight improvement of the navigation conditions was noted within the Chukchi Sea. In general, the decrease of the route Sabetta – the Bering Strait length in compact drift ice with total concentration equal to 9 tenths or more and in the presence of old ice is partially compensated by increase of the route length in compact ice in the presence of thick first-year ice. The decrease and the increase are relatively equal.

About the Authors

V. Yu. Tretyakov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Institute of Earth Sciences, Saint Petersburg State University
Russian Federation

St. Petersburg.



S. V. Frolov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg.



M. I. Sarafanov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Institute of Earth Sciences, Saint Petersburg State University
Russian Federation

St. Petersburg.



References

1. Munshi J. Trends in Polar Sea Ice Extent 1979–2015 (April 23, 2015). Available at SSRN: http://dx.doi.org/10.2139/ssrn.2598152 (accessed 13.06.2019).

2. Bol’shijanov D.Ju., Makarov A.S., Morozova E.A., Pavlov M.V., Savatjugin L.M. Polar regions environment during last millennium on the base of lake sediments investigations. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2009, 1 (81): 108–115. [In Russian].

3. Kovalevskij D.V., Alekseev G.V., Bobylev L.P., Danilov A.I. The consequences of climate change for some types of economic activity in the Arctic. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2012, 4 (94): 90–98. [In Russian].

4. Brestkin S.V., Bychenkov Iu.D., Deviataev O.S., Folomeev O.V. Ensuring hydrometeorological safety in the Arctic region // Problems of prevention and emergency response in the Arctic region. Safe city in the Arctic. EMERCOM of Russia, 2016: 68–72. [In Russian].

5. State institution “State Hydrological Institute”. Standard organization STO GGI 52.08.41-2017. Osnovnye gidrologicheskie harakteristiki pri nestacionarnosti vremennyh rjadov, obuslovlennoj vlijaniem klimaticheskih faktorov. Rekomendacii po raschetu. The main hydrological characteristics of non-stationary time series, due to the influence of climatic factors. Calculation recommendations. St. Petersburg, State Hydrological Institute, 2017: 46 p. [In Russian].

6. Tret’iakov V.Iu., Frolov S.V., Sarafanov M.I. Analysis of the interannual variability of ice conditions on the route Sabetta – Kara Gate – Murmansk for 1997–2017. Geografija: Razvitie nauki i obrazovanija (Po materialam mezhdunarodnoi nauchno-prakticheskoi konferentsii «LXXI Gertsenovskie chteniia». RGPU im. A.I. Gertsena,18–21 aprelia 2018 goda). “Geography: Development of Science and Education” based on the materials of the international scientific-practical conference «LXXI Herzen readings. Russian State Pedagogical University named after A.I. Herzen, April 18–21, 2018». 2018: 261–265. [In Russian].

7. Tret’iakov V.Ju., Frolov S.V., Sarafanov M.I., Fediakov V. Geo-information technologies for ensuring maritime transport operations in the Arctic and freezing seas // Sovremennye problemy gidrometeorologii i ustoichivogo razvitiia Rossiiskoi Federatsii. Modern problems of hydrometeorology and sustainable development of the Russian Federation. St. Petersburg: Russian State Pedagogical University named after A.I. Herzen, 2019: 491–493. [In Russian].

8. Druzhinin V.S., Sikan A.V. Metody statisticheskoj obrabotki gidrometeorologicheskoj informacii. Methods of statistical processing of hydrometeorological information. St. Petersburg: Russian State Pedagogical University named after A.I. Herzen, 2001: 167 p. [In Russian].

9. Sikan A.V. Metody statisticheskoj obrabotki gidrometeorologicheskoj informacii. Methods of statistical processing of hydrometeorological information. St. Petersburg: Russian State Pedagogical University named after A.I. Herzen, 2007: 279 p. [In Russian].

10. Malinin V.N. Statisticheskie metody analiza gidrometeorologicheskoi informatsii. Statistical methods for analyzing hydrometeorological information. St. Petersburg: Russian State Pedagogical University named after A.I. Herzen, 2008: 408 p. [In Russian].

11. Julin A.V., Sharatunova M.V., Pavlova E.A., Ivanov V.V. Seasonal and inter-annual variability of the ice massifs of the East Siberian Sea. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2018, 64, 3: 229–240. [In Russian].

12. National snow & Ice Data Center. Melt season shifts into high gear. Available at: https://nsidc.org/arcticseaicenews/ (accessed 14.07.2019).

13. Hotchenkov S.V. Formation of the age composition of the ice cover in the Laptev Sea. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2017, 63, 4: 5–15. [In Russian].

14. Volkov V.A., Mushta A.V., Demchev D.M., Korzhikov A.Ja., Sandven S. Connection of large-scale variability of the ice drift field in the Arctic Ocean with climatic changes in the total ice cover occurring during the last decades. Problemy Arktiki i Antarktiki. Problems of Arctic and Antarctic. 2016, 2 (108): 50–63. [In Russian].

15. Bogorodskii V.V., Gavrilo V.P. Led. Fizicheskie svoistva. Sovremennye metody gliatsiologii. Ice. Physical properties. Modern methods of glaciology. Leningrad: Hydrometeoizdat, 1980: 384 p. [In Russian].

16. Gavrilo V.P., Kovalev S.M., Nedoshivin O.A. Raschetnye i srednemnogoletnie kharakteristiki mekhanicheskikh svoistv odnoletnego l’da Barentseva i Karskogo morei. Calculated and average long-term characteristics of the mechanical properties of the annual ice of the Barents and Kara seas. Handbook ed. V.P. Gavrilo. St. Petersburg: Hydrometeoizdat, 1996: 42 p. [In Russian].

17. Opasnye ledovye iavleniia dlia sudokhodstva v Arktike. Dangerous ice phenomena for shipping in the Arctic. Ed. Mironov E.U. St. Petersburg: AARI, 2010: 319 p. [In Russian].

18. Appel’ I.L. On the forces of compression and internal resistance in the ice cover under pressure drift. Trudy AANII. Proceedings of AARI. 1976, 320: 153–160. [In Russian].

19. Faddeev O.V., Kheisin D.E. Determining the structure of formulas for evaluating the interaction of ice cover with structures. Trudy AANII. Proceedings of AARI. 1985, 391: 55–62. [In Russian].

20. Alekseev Iu.N., Afanas’ev V.P., Litokov O.E., Manurov M.N., Panov V.V., Truskov P.A. Ledotekhnicheskie aspekty osvoeniia morskikh mestorozhdenii nefti i gaza. Ice engineering aspects of the development of offshore oil and gas fields. St. Petersburg: Hydrometeoizdat, 2001: 360 p. [In Russian].

21. Doronin Iu.P., Kheisin D.E. Morskoi led. Sea ice. Leningrad: Hydrometeoizdat, 1975: 318 p. [In Russian].

22. Nikitin V.A., Sukhorukov K.K. Durability of sea ice fields and ice loads. Meteorologiya i gidrologiya. Meteorology and Hydrology. 1998, 12: 88–95. [In Russian].

23. Smirnov V.N., Shushlebin A.I., Kovalev S.M., Sheikin I.B. Metodicheskoe posobie po izucheniiu fiziko-mekhanicheskikh kharakteristik ledianykh obrazovanii kak iskhodnykh dannykh dlia rascheta ledovykh nagruzok na berega, dno i morskie sooruzheniia. Methodological manual for the study of the physicomechanical characteristics of ice formations as initial data for the calculation of ice loads on the shores, bottom and offshore structures. St. Petersburg: AARI, 2011: 180 p. [In Russian].

24. Ledianye obrazovaniia morei zapadnoi Arktiki. Ice Formations of the Western Arctic Seas. Ed. G.K. Zubakin. St. Petersburg: AARI, 2006: 272 p. [In Russian].

25. SNiP 2.06.04-82. Nagruzki i vozdeistviia na gidrotekhnicheskie sooruzheniia (volnovye, ledovye i ot sudov). Loads and impacts on hydraulic structures (wave, ice and from ships). Moscow: Stroiizdat, 1995: 46 p. [In Russian].

26. Guzenko R.B., Mironov E.U., May R.I. Morphometry and internal structure of ice ridges in the Kara and Laptev Seas. Proceedings of the Twenty-ninth International Ocean and Polar Engineering Conference. Honolulu. 2019: 647–654.

27. Salganik E., Høyland K.V., Shestov A. Thermodynamics and consolidation of ice ridges for laboratory scale. Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions. June 11–16, 2017, Busan, Korea. 2017. Paper POAC17 -078. Available et: http://www.poac.com/Papers/2017/pdf/POAC17_078_Evgenii.pdf (accessed 29.08.2019).


Review

For citations:


Tretyakov V.Yu., Frolov S.V., Sarafanov M.I. The variability of ice conditions along the Northern sea route for the period 1997–2018. Arctic and Antarctic Research. 2019;65(3):328-340. (In Russ.) https://doi.org/10.30758/0555-2648-2019-65-3-328-340

Views: 1226


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)