Preview

Arctic and Antarctic Research

Advanced search

Aerosol component of the atmospheric surface layer according observations of the expedition “North-2015”

https://doi.org/10.30758/0555-2648-2017-0-4-57-65

Abstract

The results of the atmospheric sea surface layer aerosol composition studies executed during expedition “Sever-2015” on the route from Arkhangelsk to the Severnaya Zemlya archipelago from October 9 to 26, 2015 are presented. The data about mass concentration of black carbon (EBC) obtained with high spatial-temporal resolution in the White, Barents and Kara Seas showed its signifi cant variability: from background values about 20 ng/m3 to values of more than 1000 ng/m3 during periods of air mass transfer from the continent. Cluster analysis of the microstructure of natural arctic aerosols gave possibility to identify the dominant groups of particles of sea salt and calcium sulfate. In case the increase of EBC up to 250 ng/m3 the groups of carbon-containing aerosols and particles rich in sulfur, characteristic for emissions from the combustion of natural fuel were revealed.

About the Authors

O. В. Popovicheva
Научно-исследовательский институт ядерной физики им. В.Д. Скобельцына МГУ
Russian Federation


A. P. Makshtas
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Russian Federation


V. V. Movchan
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Russian Federation


N. М. Pеrsiantseva
Научно-исследовательский институт ядерной физики им. В.Д. Скобельцына МГУ
Russian Federation


М. A. Timofeev
Научно-исследовательский институт ядерной физики им. В.Д. Скобельцына МГУ
Russian Federation


N. M. Sitnikov
Центральная аэрологическая обсерватория (ЦAО)
Russian Federation


References

1. Киреева Е.Д, Поповичева О.Б., Тимофеев М.А. и др. Физикохимия углеродосодержащих аэрозолей эмиссии морских кораблей // Оптика атмосферы и океана. 2011. Т. 24. № 6. С. 459–467.

2. Полькин В.В., Голобокова Л.П., Козлов В.С., Коробов В.Б., Лисицын А.П., Панченко М.В., Пескова М.А., Ходжер Т.В., Шевченко В.П. Оценка связи микрофизического и химического состава для приводного аэрозоля Белого моря // Оптика атмосферы и океана. 2004. № 17. С. 377–386.

3. Поповичева О.Б., Киреева Е.Д., Тимофеев М.А., Шония Н.К., Могильников В.П. Углеродосодержащие аэрозоли в эмиссиях авиации и морского транспорта // Известия РАН. Физика атмосферы и океана. 2010. № 3. С. 368–375.

4. AMAP Report. P.K. Quinn, A. Stohl, et al. The Impact of Black Carbon on Arctic Climate. Arctic Monitoring and Assessment Program, 2011. Oslo. 72 p.

5. Doherty S.J., Warren S.G., Grenfell T.C. et al. Light-absorbing impurities in arctic snow // Atmos. Chem. Phys. 2010. Vol. 10 P. 11647–11680.

6. Flanner M.G. Arctic climate sensitivity to local black carbon // J. Geophys. Res. 2013. Vol. 118. P. 1840–1851, doi:10.1002/jgrd.50176.

7. Hansen A.D.A., Rosen H. Horizontal inhomogeneities in the particulate carbon component of the Arctic haze //Atmos. Environ. 1985. Vol. 19 (12). Р. 2175–2180.

8. Koch D. et al. Evaluation of black carbon estimations in global aerosol models // Atmos. Chem. Phys. 2009 Vol. 9. Р. 9001–9026.

9. Moldanova J., Fridell E., Popovicheva O. et al. Characterization of particulate matter and gaseous emissions from a large ship diesel engine //Atmos. Environ. 2009. Vol. 43. P. 2632–2641.

10. Popovicheva O., Kireeva E., Persiantseva N., Timofeev M., Bladt H., Ivleva N.P., Niessner R., Moldanová J. Microscopic characterization of individual particles from multicomponent ship exhaust // J. Environ. Monit. 2012. Vol. 14 (12). P. 3101–3110.

11. Popovicheva O., Evangeliou N., Eleftheriadis K., Athina K.C., Sitnikov N., Eckhard S., Stoh A. Black carbon sources constrained by observations and modeling in the Russian high Arctic // Environ. Sci. Tech. 2017. Vol. 51 (7). Р. 3871–3879.

12. Sakerin S.M., Bobrikov A.A., Bukin O.A., Golobokova L.P., Pol’kin Vas.V., Pol’kin Vik.V., ShmirkoK.A., Kabanov D.M., Khodzher T.V., Onischuk N.A., Pavlov A.N., Potemkin V.L., Radionov V.F. On measurements of aerosol-gas composition of the atmosphere during two expeditions in 2013 along the Northern Sea Route // Atmos. Chem. Phys. 2015. Vol. 15 (21). Р. 12413–12443.

13. Schevchenko V.P., Kopeikin V.M., Evangeliou N. et al. Atmospheric black carbon over the north atlantic and Russian arctic seas in summer-autumn time // Химия в интересах устойчивого развития. 2016. Т. 24. С. 441–446.

14. Stock M., Ritter C., Herber A., et al. Springtime Arctic aerosol: Smoke versus haze, a case study for March 2008 //Atmos. Environ. 2012. Vol. 52. P. 48–55.

15. Stohl A., Klimont Z., Eckhardt S., et al. Black carbon in the Arctic: The underestimated role of gas fl aring and residential combustion emissions // Atmos. Chem. Phys. 2013. Vol. 13 (17). P. 8833–8855.

16. Stone R.S., Sharma S., Herber A. et al. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements // Elem. Sci. Anthr. 2014. Vol. 2. P. 1–22.

17. Weinbruch S., Wiesemann D., Ebert M. et al. Chemical composition and sources of aerosol particles at Zeppelin Mountain (NyÅlesund, Svalbard): An electron microscopy study // Atmos. Environ. 2012. Vol. 49. P. 142–150.

18. Xie Z., Blum J.D., Utsunomiya S. et al. Summertime carbonaceous aerosols collected in the marine boundary layer of the Arctic Ocean // J. Geophys. Res. 2007. Vol. 112. D02306.

19. Yun Y., Penner J.E., Popovicheva O. The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed-phase clouds // Atmos. Chem. Phys. 2013. Vol. 13. P. 4339–4348.


Review

For citations:


Popovicheva O.В., Makshtas A.P., Movchan V.V., Pеrsiantseva N.М., Timofeev М.A., Sitnikov N.M. Aerosol component of the atmospheric surface layer according observations of the expedition “North-2015”. Arctic and Antarctic Research. 2017;(4):57-65. (In Russ.) https://doi.org/10.30758/0555-2648-2017-0-4-57-65

Views: 731


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)