Preview

Arctic and Antarctic Research

Advanced search

Influence of Atlantic inflow on the freshwater content in the upper layer of the Arctic basin

https://doi.org/10.30758/0555-2648-2019-65-4-363-388

Abstract

Inter-decadal changes in the water layer of Atlantic origin and freshwater content (FWC) in the upper 100 m layer were traced jointly to assess the influence of inflows from the Atlantic on FWC changes based on oceanographic observations in the Arctic Basin for the 1960s – 2010s. For this assessment, we used oceanographic data collected at the Arctic and Antarctic Research Institute (AARI) and the International Arctic Research Center (IARC). The AARI data for the decades of 1960s – 1990s were obtained mainly at the North Pole drifting ice camps, in high-latitude aerial surveys in the 1970s, as well as in ship-based expeditions in the 1990s. The IARC database contains oceanographic measurements acquired using modern CTD (Conductivity – Temperature – Depth) systems starting from the 2000s. For the reconstruction of decadal fields of the depths of the upper and lower 0 °С isotherms and FWC in the 0–100 m layer in the periods with a relatively small number of observations (1970s – 1990s), we used a climatic regression method based on the conservativeness of the large-scale structure of water masses in the Arctic Basin. Decadal fields with higher data coverage were built using the DIVAnd algorithm. Both methods showed almost identical results when compared.  The results demonstrated that the upper boundary of the Atlantic water (AW) layer, identified with the depth of zero isotherm, raised everywhere by several tens of meters in 1990s – 2010s, when compared to its position before the start of warming in the 1970s. The lower boundary of the AW layer, also determined by the depth of zero isotherm, became deeper. Such displacements of the layer boundaries indicate an increase in the volume of water in the Arctic Basin coming not only through the Fram Strait, but also through the Barents Sea. As a result, the balance of water masses was disturbed and its restoration had to occur due to the reduction of the volume of the upper most dynamic freshened layer. Accordingly, the content of fresh water in this layer should decrease. Our results confirmed that FWC in the 0–100 m layer has decreased to 2 m in the Eurasian part of the Arctic Basin to the west of 180° E in the 1990s. In contrast, the FWC to the east of 180° E and closer to the shores of Alaska and the Canadian archipelago has increased. These opposite tendencies have been intensified in the 2000s and the 2010s. A spatial correlation between distributions of the FWC and the positions of the upper AW boundary over different decades confirms a close relationship between both distributions. The influence of fresh water inflow is manifested as an increase in water storage in the Canadian Basin and the Beaufort Gyre in the 1990s – 2010s. The response of water temperature changes from the tropical Atlantic to the Arctic Basin was traced, suggesting not only the influence of SST at low latitudes on changes in FWC, but indicating the distant tropical impact on Arctic processes. 

About the Authors

G. V. Alekseev
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



A. V. Pnyushkov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; International Arctic Research Center, University of Alaska
Russian Federation

St. Petersburg, Fairbanks



A. V. Smirnov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



A. E. Vyazilova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



N. I. Glok
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



References

1. Alekseev G.V., Bulatov L.V., Zakharov V.F. Fresh water freezing/melting cycle in the Arctic Ocean. The Freshwater Budget of the Arctic Ocean / Ed. Lewis E.L. et al. Kluwer Academic Press, 2000: 589–608.

2. Aagaard K., Carmack E.C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 1989, 94: 14485–14498.

3. Alekseev G.V., Ivanov V.V., Korablev A.A. Interannual variability of deep convection in the Greenland Sea. Okeanologiya. Oceanology. 1995, 35 (1): 45–52. [In Russian].

4. Proshutinsky A., Johnson M.A. Two circulation regimes of the wind-driven Arctic Ocean. J. Geophys. Res. 1997, 102: 12493–12514.

5. Treshnikov A.F., Baranov G.I. The structure of water circulation in the Arctic basin. Leningrad: Gigrometeoizdat, 1972: 158 p. [In Russian].

6. Hakkinen S.A. Simulation of thermohaline effects of a Great Salinity Anomaly. J. Climate. 1999, 12: 1781–1795.

7. Karcher M. J., Gerdes R., Kauker F., Köberle C., Yashayaev I. Arctic Ocean change heralds North Atlantic freshening. Geophys. Research Letters. 2005, 32: L21606.

8. Jahn A., Aksenov Y.O., de Cuevas B.A., De Steur L., Häkkinen S., Hansen E. et al. Arctic Ocean freshwater: How robust are model simulations? J. Geophys. Res. 2012, 117: C00D16. doi:10.1029/2012JC007907.

9. Fedorov A., Barreiro M., Boccaletti G., Pacanowski R., Philander S.G. The freshening of surface waters in high latitudes:effects on the thermohaline and wind-driven circulations. J. Phys. Oceanogr. 2007, 37 (4): 896–907.

10. Serreze M.C., Barrett A.P., Slater A.G., Woodgate R.A., Aagaard K., Lammers R.B., Steele M., Moritz R., Meredith M., Lee C.M. The large-scale freshwater cycle of the Arctic. J. Geophys. Res. Ocean. 2006, 111: 1–19.

11. Morison J.H., Kwok R., Peralta-Ferriz C., Alkire M., Rigor I.G., Andersen R., Steele M. Changing Arctic Ocean freshwater pathways. Nature. 2012, 481: 66–70.

12. Rabe B., Karcher M.J., Schauer U., Toole J.M., Krishfield R.A., Pisarev S., Kauker F., Gerdes R., Kikuchi T. An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006–2008 period. Deep. Res. I. 2011, 58: 173–185.

13. Yamamoto-Kawai M., McLaughlin F.A., Carmack E.C., Nishino S., Shimada K., Kurita N. Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. J. Geophys. Res. 2009, 114: C00A05.

14. Polyakov I.V., Alexeev V.A., Belchansky G.I., Dmitrenko I.A., Ivanov V.V., Kirillov S.A., Korablev A.A., SteeleM., Timokhov L.A., Yashayaev I. Arctic Ocean freshwater changes over the past 100 years and their causes. J. Climate. 2008, 21(2): 364–384.

15. Rawlins M.A., Steele M., Holland M.M., Adam J.C., Cherry J.E., Francis J.A., Groisman P.Y., Hinzman L.D., Huntington T.G., Kane D.L., Kimball J.S., Kwok R., Lammers R.B., Lee C.M., Lettenmaier D.P., Mcdonald K.C., Podest E., Pundsack J.W., Rudels B., Serreze M.C., Shiklomanov A., Skagseth Ø., Troy T.J., Vörösmarty C.J., Wensnahan M., Wood E.F., Woodgate R., Yang D., Zhang K., Zhang T. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations. J. Climate. 2010, 23: 5715–5737.

16. Shu Q., Qiao F., Song Z., Zhao J., Li X. Projected freshening of the Arctic Ocean in the 21 st century. J. Geophys. Res. Ocean. 2018, 123: 9232–9244.

17. McPhee M.G., Proshutinsky A., Morison J.H., Steele M., Alkire M.B. Rapid change in freshwater content of the Arctic Ocean. Geophys. Research Letters. 2009, 36, L10602: 1–6.

18. Vihma T., Screen J.A., Tjernström M., Newton B., Zhang X., Popova V., Deser C., Holland M., Prowse T. The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res. Biogeosciences. 2016, 121: 586–620.

19. Häkkinen S., Proshutinsky A. Freshwater content variability in the Arctic Ocean. J. Geophys. Res. Ocean. 2004, 109: C3.

20. Proshutinsky A., Yang J., Krishfield R.A., Gerdes R., Karcher M.J., Kauker F., Koeberle C., Hakkinen S., Hibler W., Holland D., Maqueda M., Holloway G., Hunke E., Maslowski W., Steele M., Zhang J. Arctic Ocean study: synthesis of model results and observations. Eos, Trans. Am. Geophys. Union. 2005, 86 (40): 367–371.

21. Proshutinsky A., Krishfield R., Barber D. Preface to special section on Beaufort Gyre Climate System Exploration Studies: Documenting key parameters to understand environmental variability. J. Geophys. Res. 2009, 114: C00A08. doi:10.1029/2008jc005162.

22. Muilwijk M., Smedsrud L.H., Ilicak M., Drange H. Atlantic water heat transport variability in the 20th century Arctic Ocean from a Global Ocean model and observations. J. Geophys. Res. Ocean. 2018, 123 (11): 8159–8179.

23. Pnyushkov A.V., Polyakov I.V., Rember R., Ivanov V.V., Alkire M.B., Ashik I.M., Baumann T.M., Alekseev G.V., Sundfjord A. Heat, salt, and volume transports in the eastern Eurasian Basin of the Arctic Ocean from 2 years of mooring observations. Ocean Sci. 2018, 14 (6): 1349–1371.

24. Quadfasel D., Sy A., Wells D., Tunik A. Warming in the Arctic. Nature. 1991, 350: 385.

25. Alekseev G.V., Bulatov L.V., Zaharov V.F., Ivanov V.V. The flow of unusually warm Atlantic waters into the Arctic basin. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1997, 356: 401–403. [In Russian].

26. Alekseev G.V., Frolov I.E., Sokolov V.T. Observations in the Arctic do not confirm the weakening of the thermohaline circulation in the North Atlantic. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2007, 413 (2): 277–280. [In Russian].

27. Polyakov I.V., Bescczynska A., Carmack E.C., Dmitrenko I.A., Fahrbach E., Frolov I.E., Gerdes R., Hansen E., Holfort J., Ivanov V.V., Johnson M.A., Karcher M., Kauker F., Morison J., Orvik K.A., Schauer U., Simmon H.L., Skagseth O., Sokolov V.T., Steele M., Timokhov L.A., Walsh D., Walsh J.E. One more step toward a warmer Arctic. Geophys. Research Letters. 2005, 32 (L17605): 1–4.

28. Polyakov I.V., Walsh J.E., Kwok R. Recent changes of Arctic multiyear sea ice coverage and the likely causes. Bull. Am. Meteorol. Soc. 2012, 93 (2): 145–151.

29. Polyakov I.V., Bhatt U.S., Walsh J.E., Abrahamsen E.P., Pnyushkov A.V., Wassmann P.F. Recent oceanic changes in the Arctic in the context of long-term observations. Ecol. Appl. 2013, 23 (8): 1745–1764.

30. Pnyushkov A.V., Polyakov I.V., Ivanov V.V., Aksenov Y.O., Coward A.C., Janout M.A., Rabe B. Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 101: 80–97.

31. Alekseev G.V., Pnuyshkov A.V., Ivanov N.E., Ashik I.M., Sokolov V.T., Golovin P.N., Bogorodsky P.V. Assessment of the climatic changes in the marine Arctic withipy 2007/08 DAT. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2009, 1 (81): 7–14. [In Russian].

32. Alekseev G.V., Ivanov N.E., Pnyushkov A.V., Harlanenkova N.E. Climatic changes in the marine Arctic at the beginning of the XXI century. Meteorological and geophysical studies. Moskow: Evropejskie izdaniya, 2011: 3–25. [In Russian].

33. Environmental Working Group (EWG). Russian Atlas of the Arctic Ocean: Oceanography Atlas for the Summer Period. Ed. Joint U.S. Boulder, CO, 1998.

34. Barth A., Beckers J-M., Troupin C., Alvera-Azcárate A., Vandenbulcke L. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Model Dev. 2014, 7 (1): 225–241.

35. Troupin C., Machín F., Ouberdous M., Sirjacobs D., Barth A., Beckers J-M. High resolution climatology of the northeast Atlantic using Data Interpolating Variational Analysis (Diva). J. Geophys. Res. 2010, 115: 1–20.

36. Korablev A.A., Smirnov A.V., Baranova O.K. Climatological atlas of the Nordic Seas and Northern North Atlantic. NOAA Atlas NESDIS 77. Silver Spring, Maryland, 2014, 13 (77): 116 p.

37. Madec G.V. NEMO Ocean engine. Laboratoire d’Oceanographie et du Climat: Experimentation et Approches Numeriques. 2016. № 27: 386 p.

38. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137: 553–597.

39. Fernandez E., Lellouche J.M. Product user manual for the Global Ocean Physical Reanalysis product GLOBAL_REANALYSIS_PHY_001_030. 2018: 55 p.

40. Timokhov L.A., Frolov I.E., Kassens H., Karpiy V.Yu., Lebedev N.V., Malinovsky S.Yu., Polyakov I.V., Hoelemann J. Changes of termohaline characteristics of transpolar system of the Arctic Ocean. Problemy Arktiki I Antarktiki. Arctic and Antarctic Research. 2016, 2 (108): 34–49. [In Russian]..

41. Rudels B. On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait. Nor. Polarinstitutt Skr. Norsk Polarinstitutt Skrifter 188. 1987, 188: 53.

42. Rudels B., Schauer U., Björk G., Korhonen M., Pisarev S., Rabe B., Wisotzki A. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 2013, 9 (1): 147–169.

43. Schauer U., Loeng H., Rudels B., Ozhigin V.K., Dieck W. Atlantic Water flow through the Barents and Kara Seas. Deep. Res. I. 2002, 49: 2281–2298.

44. Schauer U., Muench R.D., Rudels B., Timokhov L.A. Impact of eastern Arctic shelf waters on the Nansen Basin intermediate layers. J. Geophys. Res. 1997, 102 (C2): 3371–3382.

45. Proshutinsky, A., Krishfield, R.A., Timmermans, M., Toole, J.M., Carmack, E.C., McLaughlin, F.A., Williams, W.J., Zimmermann, S.L., Itoh, M., Shimada, K. Beaufort Gyre freshwater reservoir: State and variability from observations. J. Geophys. Res. 2009, 114 (C00A10): 1–25.

46. Ryabchenko V.A., Alekseev G.V., Neelov I.A., Dvornikov A.Yu. Distribution of river waters in the Arctic Ocean. Meteorologiya i gidrologiya. Meteorology and hydrology. 2001, 9: 61–69. [In Russian].

47. Vise V.U. The reasons of Arctic warming. Sovetskaya Arktika. Soviet Arctic.1937, 1: 1–7. [In Russian].

48. Alekseev G., Kuzmina S., Bobylev L., Urazgildeeva A., Gnatiuk N. Impact of atmospheric heat and moisture transport on the Arctic warming. Int. J. Climatol. 2019. https://doi.org/10.1002/joc.6040.

49. McCarthy G.M., Joyce T., Josey S. Gulf Stream variability in the context of quasi-decadal and multi-decadal Atlantic climate variability: Gulf Stream and Atlantic variability. Geophys. Research Letters. 2018, 45: 11257–11264.

50. Årthun M., Eldevik T. On anomalous ocean heat transport toward the Arctic and associated climate predictability. J. Clim. 2016, 29 (2): 689–704.

51. Nummelin A., Li C., Hezel P.J. Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophys. Research Letters. 2017, 44 (4): 1899–1908.

52. Alekseev G.V., Kuzmina S.I., Urazgildeeva A.V., Bobilev L.P. The effect of atmospheric heat and moisture transfers on warming in the Arctic during the winter period. Fundamental’naya i prikladnaya klimatologiya. Fundamental and Applied Climatology. 2016, 1: 43–63. [In Russian].

53. Alekseev G.V., Kuzmina S.I., Glok N.I. Influence of temperature anomalies of the ocean surface in low latitudes on the atmospheric heat transport to the arctic. Fundamental’naya i prikladnaya klimatologiya. Fundamental and Applied Climatology. 2017, 1: 106–123. [In Russian].

54. Karsakov A.L. Oceanographic Investigations along the Kola Section in the Barents Sea in 1900–2008. Murmansk: PINRO Press, 2009: 139 p. [In Russian].


Review

For citations:


Alekseev G.V., Pnyushkov A.V., Smirnov A.V., Vyazilova A.E., Glok N.I. Influence of Atlantic inflow on the freshwater content in the upper layer of the Arctic basin. Arctic and Antarctic Research. 2019;65(4):363-388. (In Russ.) https://doi.org/10.30758/0555-2648-2019-65-4-363-388

Views: 1044


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)