Preview

Arctic and Antarctic Research

Advanced search

Transformation of Atlantic Water in the north-eastern Barents Sea in winter

https://doi.org/10.30758/0555-2648-2020-66-3-246-266

Abstract

Hydrographic observations, carried out in March-May, 2019 during “Transarktika-2019” expedition onboard R/V “Akademik Tryoshnikov” allowed studying mechanisms of Atlantic Water (AW) transformation in the Barents Sea. Although this research topic is rather traditional for oceanographic studies, there are still a number of questions, which require clarification. Among these is a deeper understanding of the AW transformation in specific regions in cold season, when the coverage by observations is scarce. In this study we performed temperature and salinity (TS) analysis of conductivity — temperature — depth (CTD) data, collected in the north-eastern “corner” of the Barents Sea — this is the area with difficult access in winter due to high concentration of pack ice. The results allowed identification of areas along the pathways of AW branches, where various types of open sea convection and cascading acted as dominant processes of AW properties change. We distinguish several driving mechanisms controlling modification of the waters of Atlantic origin. An advantage of winter measurements is that the active stage of AW transformation mechanisms is explicitly observed at the consecutive CTD sections.

About the Authors

V. V. Ivanov
Lomonosov Moscow State University; State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

Moscow

St. Petersburg



I. E. Frolov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


K. V. Filchuk
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


References

1. Petoukhov V., Semenov V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atmospheres. 2010, 115: D21111. doi:10.1029/2009JD013568.

2. Timofeev V.T. Water masses of the Arctic Basin. Leningrad: Hydrometeoizdat, 1960: 191 p. [In Russian].

3. Årthun, M.A., T. Eldevik, L.H. Smedsdrud, O, Skagseth, R.B. Ingvaldsen. Quantifying the influence of Atlantic heat on the Barents Sea ice variability and retreat. Journ. Clim. 2012, 25: 4736 — 4743.

4. Schlichtholz P. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming. Scientific Reports. 2019, 9 (1): 13692. https://doi.org/10.1038/s41598-019-49965-6.

5. Lind S., Ingvaldsen. R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change. 2018, 8 (7): 634—639.

6. Ivanov V.V., Repina I.A. Mid-winter anomaly of sea ice in the Western Nansen Basin in 2010s. IOP Conf. Ser.: Earth Environ. Sci. 2019, 231: 012024. doi:10.1088/1755-1315/231/1/012024.

7. Pfirman S.L., Bauch D., Gammelsrød T. The northern Barents Sea: water mass distribution and modification. In: The polar oceans and their role in shaping the global environment. Ed. O.M. Johannessen. Washington, DC: American Geophysical Union, 1994: 7794.

8. Ivanov V., Alexeev V., Koldunov N.V., Repina I.A., Sandoe A.B., Smedsrud L.H., Smirnov A. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. J. Phys. Oceanogr. 2016, 46: 1437—1456. doi: 10.1175/JPO-D-15-0144.1.

9. Lind S., Ingvaldsen R.B. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Research. Part I: Oceanographic Research Papers. 2012, 62: 70 — 88.

10. Schauer U., Rudels B., Jones E.P., Anderson L.G., Muench R.D., Bjørk G., Swift J.H., Ivanov V., Larsson A.-M. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins. Annales Geophysicae. 2002, 20 (2): 257—273.

11. Nikiforov Ye. G., Shpaikher A.O. Features of the formation of hydrological regime large-scale variations in the Arctic Ocean. Leningrad: Hydrometeoizdat, 1980: 269 p. [In Russian].

12. Kirillov S. A., Dmitrenko I. A., Ivanov V. V., Aksenov Ye., Makhotin M. S., de Quevas B.A. The influence of atmospheric circulation on the dynamics of the intermediate water layer in the eastern part of the St. Anna Trough. Dokl. Earth Sc. 2012, 444 (1): 630 — 633. doi: 10.1134/S1028334X12050121.

13. Aksenov Y., Ivanov V.V., Nurser A.J.G., Bacon S., Polyakov I.V., Coward A.C., NaveiraGarabato A.C., Beszczynska-Moeller A. The Arctic Circumpolar Boundary Current. J. Geophys. Res. 2011, 116: C09017. doi:10.1029/2010JC006637.

14. Ivanov V.V., Shapiro G.I. Formation of dense water cascade in the marginal ice zone in the Barents Sea. Deep Sea Res. Part I. 2005, 52: 1699—1717. doi: 10.1016/j.dsr.2005.04.004.

15. Rudels B. The Theta-S relations in the northern seas: Implications for the deep circulation. Polar Research. 1986, 4: 133 — 159.

16. Frolov I.E., Ivanov V.V., Filchuk K.V., Makshtas A.P., Kustov V.Yu., Mahotina I.A., Ivanov B.V., Urazgildeeva A.V., Syoemin V.L., Zimina O.L., Krylov A.A., Bogin V.A., Zakharov V.Yu., Malyshev S.A., Gusev E.A., Baryshev P.E., Pilgaev S.V., Kovalev S.M., Turyakov A.B. Transarktika-2019: winter expedition in the Arctic Ocean on the R/V “Akademik Tryoshnikov”. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (3): 255 — 274. doi: 10.30758/0555-2648-2019-65-3-255-274.

17. Mamaev O.I. TS-analysis of World ocean waters. Leningrad: Hydrometeoizdat, 1970: 364 p. [In Russian]

18. Lien V., Trofimov A.G. Formation of Barents Sea Branch Water in the north-eastern Barents Sea. Polar Research. 2013, 32: 18905. http://dx.doi.org/10.3402/polar.v32i0.18905.

19. Jakobsson M., Cherkis N.Z., Woodward J., Macnab R., Coackley B. New grid of Arctic bathymetry aids scientists and mapmakers. EOS Transactions AGU. 2000, 81 (9). Available at: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic.html (acessed 20.04.2020)

20. Shapiro G.I., Huthnance J.M., Ivanov V.V. Dense water cascading off the continental shelf. J. Geophys. Res. 2003, 108 (C12): paper 3390.

21. Loeng H. Features of the physical oceanographic conditions of the Barents Sea. Polar Research. 1991, 10: 518.

22. Loeng H., Ozhigin V., Adlandsvik B. Water fluxes through the Barents Sea. ICES Journal of Marine Science. 1997, 54: 310 — 317.

23. Makhotin M.S., Ivanov V.V. Circulation of the Atlantic water in the Barents Sea based on hydrological survey data and numerical simulation. In: Monitiring, modelling and forecast of environmental conditions in the Arctic, Proceedings of Hydrometcentre of Russia / Ed. V.V. Ivanov. 2016, 361 (4): 169 — 191. [In Russian].

24. Ivanov V.V. Atlantic waters in the Western Arctic: Integrated Oceanographic Studies in the Arctic Ocean. Eds. A.P. Lisitsyn, M.E. Vinogradov and E.A. Romankevich. M.: Nauchniy Mir, 2002: 76 — 91 [In Russian].

25. Lind S., Ingvaldsen R.B. Variability and impacts of Atlantic Water entering the Barents Sea from the north. Deep Sea Res. Part I: Oceanographic Research Papers. 2012, 62: 70 — 88. doi:10.1016/j.dsr.2011.12.007

26. Aagaard K., Coachman L.K., Carmack E. On the halocline of the Arctic Ocean. Deep Sea Res. 1981, 28A: 529 — 545.

27. Martin S., Cavalieri D.J. Contribution of the Siberian shelf to the Arctic Ocean intermediate and deep water. J. Geophys. Res. 1989, 94: 12725 — 12738.

28. Cavalieri D., Parkinson C., Gloersen P., Zwally H.J. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, 1979 — 2010. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. 1996 (updated yearly).

29. Aksenov Y., Bacon S., Coward A.C., Nurser A.J. The North Atlantic inflow to the Arctic Ocean: high-resolution model study. Journal of Marine Systems. 2010, 79: 1 — 22.

30. Ivanov V.V., Shapiro G.I., Huthnance J.M., Aleynik D.M., Golovin P.N. Cascades of dense water around the World Ocean. Progress in Oceanography. 2004, 60: 47 — 98.


Review

For citations:


Ivanov V.V., Frolov I.E., Filchuk K.V. Transformation of Atlantic Water in the north-eastern Barents Sea in winter. Arctic and Antarctic Research. 2020;66(3):246-266. https://doi.org/10.30758/0555-2648-2020-66-3-246-266

Views: 1143


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)