Preview

Arctic and Antarctic Research

Advanced search

Distribution of suspended particulate matter in the Barents Sea in late winter 2019

https://doi.org/10.30758/0555-2648-2020-66-3-267-278

Abstract

Arctic summer and winter sea-ice extent is continuously declining as a result of climate change, affecting the hydrography and biogeochemical cycles on the seasonally ice-free Eurasian Shelves. The prolongation of the open-water season causes higher sediment resuspension and coastal erosion due to larger wind fetch and wave heights. This impacts the optical properties of the water column and hence biological productivity in this region. During “Transarktika-2019” leg 1 in late winter 2019, a comprehensive dataset of filtered water samples and optical data was collected throughout the central and northern Barents Sea. Combining suspended particulate matter concentrations obtained from water samples and optical data revealed a pronounced bottom nepheloid layer on the Barents Sea shelf even under ice-covered conditions. Moreover, the data indicate that the Franz Viktoria Trough could be a major pathway for sediment transport into the Eurasian Basin. Therefore, to link changes in sediment distribution and its impact on the ecosystem under a warming climate, further studies of sediment dynamics are required, particularly during winter.

About the Authors

S. Buettner
Institute for Ecosystem Research, Kiel University
Germany


V. V. Ivanov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Lomonosov Moscow State University
Russian Federation

St. Petersburg

Moscow



H. Kassens
GEOMAR Helmholtz Centre for Ocean Research Kiel
Germany
Kiel


N. A. Kusse-Tiuz
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


References

1. Sorteberg A., Kvingedal B. Atmospheric forcing on the Barents sea winter ice extent. Journal of Climate. 2006, 19 (19): 4772—4784. https://doi.org/10.1175/JCLI3885.1.

2. Serreze M.C., Meier W.N. The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Annals of the New York Academy of Sciences. 2019, 1436(1): 36 — 53. https://doi.org/10.1111/nyas.13856.

3. Eicken H., Gradinger R., Gaylord A., Mahoney A., Rigor I., Melling H. Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions? Deep Sea Research Part II: Topical Studies in Oceanography. 2005, 52 (24): 3281— 3302. https://doi.org/10.1016/j.dsr2.2005.10.006.

4. Carmack E., Barber D., Christensen J., Macdonald R., Rudels B., Sakshaug E. Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Progress in Oceanography. 2006, 71 (2): 145 — 181. https://doi.org/10.1016/j.pocean.2006.10.005.

5. Marsh A.G., Tenore K.R. The role of nutrition in regulating the population dynamics of opportunistic, surface deposit feeders in a mesohaline community. Limnology and Oceanography. 1990, 35 (3): 710—724. https://doi.org/10.4319/lo.1990.35.3.0710.

6. Graf G., Rosenberg R. Bioresuspension and biodeposition: A review. Journal of Marine Systems. 1997, 11 (3): 269—278. https://doi.org/10.1016/S0924-7963(96)00126-1.

7. Retamal L., Bonilla S., Vincent W.F. Optical gradients and phytoplankton production in the Mackenzie River and the coastal Beaufort Sea. Polar Biology. 2007, 31 (3): 363 — 379. https://doi.org/10.1007/s00300-007-0365-0

8. Politova N.V., Kravchishina M.D., Novigatsky A.N., Lokhov A.S. Dispersed sedimentary matter of the Barents Sea. Oceanology. 2019, 59 (5): 697 — 714. https://doi.org/10.1134/S0001437019050151.

9. Lisitzin A.P. Sedimentary system of the Arctic Ocean - interactions between outer and inner geospheres. A. P. Lisitzin (Hrsg.), Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer. 2002: 203 — 226. https://doi.org/10.1007/978-3-642-55905-1_8

10. Lisitzin A.P., Shevchenko V.P., Burenkov V.I. Hydrooptics and suspended matter of Arctic seas. Atmosph. Ocean Optic. 2000, 13 (1): 61 — 71.

11. Wegner C., Hölemann J.A., Dmitrenko I., Kirillov S., Tuschling K., Abramova E., Kassens H. Suspended particulate matter on the Laptev Sea shelf (Siberian Arctic) during ice-free conditions. Estuarine, Coastal and Shelf Science. 2003, 57 (1): 55 — 64. https://doi.org/10.1016/S0272-7714(02)00328-1.

12. Wegner C., Bauch D., Hölemann J. A., Janout M. A., Heim B., Novikhin A., Kassens H., Timokhov L. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer. Biogeosciences. 2013, 10 (2): 1117 — 1129. https://doi.org/10.5194/bg-10-1117-2013.

13. Rutgers van der Loeff M. M., Meyer R., Rudels B., Rachor E. Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 234Th depletion. Deep Sea Research Part I: Oceanographic Research Papers. 2002, 49 (11): 1941 — 1958. https://doi.org/10.1016/S0967-0637(02)0113-9.

14. Schäfer P., Ritzrau W.A., Schlüter M., Thiede J. (Eds.). The Northern North Atlantic: a changing environment. Springer, Berlin, 2001: 491 p.

15. Peinert R., Antia A., Bauerfeind E., V. Bodungen B., Haupt O., Krumbholz M., Peeken I., Ramseier R.O., Voss M., Zeitzschel B. Particle flux variability in the Polar and Atlantic biogeochemical provinces of the Nordic Seas. Schäfer, P., Ritzrau, W., Schlüter, M., Thiede, J. (Eds.), The Northern North Atlantic: a changing environment. Springer, Berlin, 2001: 53 — 68.

16. Frolov I.E., Ivanov V.V., Filchuk K.V., Makshtas A.P., Kustov V.Yu., Mahotina I.A., Ivanov B.V., Urazgildeeva A.V., Syoemin V.L., Zimina O.L., Krylov A.A., Bogin V.A., Zakharov V.Yu., Malyshev S.A., Gusev E.A., Baryshev P.E., Pilgaev S.V., Kovalev S.M., Turyakov A.B. Transarktika-2019: winter expedition in the Arctic Ocean on the R/V “Akademik Tryoshnikov”. Problemy Arktiki i Antarcktiki. Arctic and Antarctic Research. 2019, 65 (3): 255 — 274. https://doi.org/10.30758/0555-2648-2019-65-3-255-274.

17. Jakobsson M., Mayer L., Coakley B., Dowdeswell J. A., Forbes S., Fridman B., Hodnesdal H., Noormets R., Pedersen R., Rebesco M., Schenke H. W., Zarayskaya Y., Accettella D., Armstrong A., Anderson R. M., Bienhoff P., Camerlenghi A., Church I., Edwards M., et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophysical Research Letters. 2012, 39 (12): L12609. https://doi.org/10.1029/2012GL052219.

18. Stiansen J.E., Korneev O., Titov O., Arneberg P. (Eds.), Filin A., Hansen J. R., Høines Å., Marasaev S. (Co-eds.) Joint Norwegian-Russian environmental status 2008. Report on the Barents Sea Ecosystem. Part II — Complete report. IMR/PINRO Joint Report Series. 2009, 3: 375 p.

19. Frolov I.E., Ivanov V.V. Nauchno-technicheskiy otchet (predvaritel’niy) o resul’tatakh komplexsnykh nauchnykh issledovaniy d expeditsii na NES “Akafemik Tryoshnikov” d Barentsevom more i prilegauschey chasti Arkticheskogo basseina (“Transarktika-2019”, perviy etap), 12 reis NES “Akademik Tryoshnikov”. Mart-May 2019 g. Scientific-technical report (Preliminary) on the results of multidisciplinary scientific investigations during an expedition onboard RV “Akademik Tryoshnikov” to the Barents Sea and the adjacent Arctic basin (“Transarktika-2019”, Leg 1), 12th Expedition of RV “Akademik Tryoshnikov”. March — May 2019. St. Petersburg: AARI funds, O-4098, 2019: 419 p. [In Russian].

20. Seapoint Sensors Inc. Seapoint Turbidity Meter: User Manual. 2013. Available at: URL: http:// www.seapoint.com/pdf/stm_um.pdf (accessed 3.09.2020).

21. Maa J. P.-Y., Xu J., Victor M. Notes on the performance of an optical backscatter sensor for cohesive sediments. Marine Geology. 1992, 104 (1): 215 — 218. https://doi.org/10.1016/0025-3227(92)90096-Z.

22. Wahsner M., Müller C., Stein R., Ivanov G., Levitan M., Shelekhova E., Tarasov G. Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways — a synthesis. Boreas. 1999, 28 (1): 215 — 233. https://doi.org/10.1111/j.1502-3885.1999.tb00216.x.

23. Barber D.G., Massom R.A. The role of sea ice in Arctic and Antarctic polynyas. In W. O. Smith & D.G. Barber (Hrsg.). Elsevier Oceanography Series, Elsevier. 2007, 74: 1—54. https://doi.org/10.1016/S0422-9894(06)74001-6.

24. Cacchione D.A., Drake D.E. Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Letters. 1986, 6: 147 — 152.

25. Gardner W.D. Periodic resuspension in Baltimore canyon by focusing of internal waves. Journal of Geophysical Research. 1989, 94 (C12): 18185 — 18194. https://doi.org/10.1029/JC094iC12p18185.

26. Ingvaldsen R., Loeng H., Asplin L. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Continental Shelf Research. 2002, 22 (3): 505 — 519. https://doi.org/10.1016/S0278-4343(01)00070-X.

27. Sternberg R.W., Aagaard K., Cacchione D., Wheatcroft R.A., Beach R.A., Roach A.T., Marsden M.A.H. Long-term near-bed observations of velocity and hydrographic properties in the northwest Barents Sea with implications for sediment transport. Continental Shelf Research. 2001, 21 (5): 509 — 529. https://doi.org/10.1016/S0278-4343(00)00103-5.

28. Rudels B. On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait. Norsk Polarinstitutt. 1987: 53 p.

29. Pfirman S.L., Bauch D., Gammelsrød T. The Northern Barents Sea: water mass distribution and modification. The Polar oceans and their role in shaping the global environment. American Geophysical Union (AGU). 1994: 77 — 94. https://doi.org/10.1029/GM085p0077.


Review

For citations:


Buettner S., Ivanov V.V., Kassens H., Kusse-Tiuz N.A. Distribution of suspended particulate matter in the Barents Sea in late winter 2019. Arctic and Antarctic Research. 2020;66(3):267-278. https://doi.org/10.30758/0555-2648-2020-66-3-267-278

Views: 841


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)