Preview

Arctic and Antarctic Research

Advanced search

The experience of remote temperature-water content sounding of atmosphere during drift of R/V “Akademik Tryoshnikov”

https://doi.org/10.30758/0555-2648-2020-66-3-349-363

Abstract

For the first time experience was gained with the operation of Russian equipment for water content and temperature remote sensing of the lower atmosphere in the Arctic. The comparison the results of measurements by radiometric systems with data of radiosoundings in wide range of meteorological conditions had been executed.
It is shown that mean difference between integral atmospheric water content, measured by water vapor radiometer WVR, and calculated from radiosoundings data does not exceed 6 % with standard deviation 0.54 kg/m2 and significant correlation coefficient 0,92. Analysis the data of meteorological temperature profiler MTR-5 allows to conclude that in general its adequately reproduce air temperature profiles in the atmospheric lower 1000 m layer. Some deviations take place only in cases of large temperature gradients.
Preliminary analysis of WVR data showed that monthly mean value of integral atmospheric water content in area under study in April 2019 year practically coincides with calculated from radiosoundings, performed in 1983—1988 years at the polar station Barentsburg, nearest to the drift region, 3.61 and 3.62 kg/m2 respectively. Same time hourly mean values of integral atmospheric water content during drift varied from 2 to 10 kg/m2, with extreme values recorded between April 15 and April 20, probably due to intensive transport of air masses of the Atlantic origin.
Based on MTR-5 data it was concluded that despite differences in sounding technology, the place and time of observations, the statistics of inversions registered during drift correspond well to statistics of inversions, recorded on the Arctic coastal stations and over sea ice cover of the Weddell Sea in winter.

About the Authors

A. P. Makshtas
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


G. N. Il’in
Institute of Applied Astronomy RAS
Russian Federation
St. Petersburg


V. Yu. Bykov
Institute of Applied Astronomy RAS
Russian Federation
St. Petersburg


E. A. Miller
R.P.O. “ATTEX”
Russian Federation
Dolgoprudny


A. V. Troitsky
Scientific Research Radiophysical Institute
Russian Federation
Nizhny Novgorod


V. Yu. Kustov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


I. I. Bolshakova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


D. D. Rize
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation
St. Petersburg


References

1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge; New York: Cambridge University Press, 2013: 1535 p.

2. Uttal T., Starkweather S., Drummond J.R., Vihma T., Makshtas A.P., Darby L.S., Burkhart J.F., Christopher J. Cox Ch., Schmeisser L.N., Haiden T., Maturilli M., Shupe M. D., De Boer G., Auromeet S., Grachev A.A., Crepinsek S.M., Bruhwiler L., Goodison B, Bruce McArthur, Walden Von P., Dlugokencky E.J., Persson P. Ola G., Lesins G., Laurila T. Ogren J.A., Stone R., Long Ch.N., Sharma S., Massling A., Turner D.D., Stanitski D.M., Asmi Ei., Aurela M., Skov H., Eleftheriadis K., Virkkula A., Platt A., Førland E.J., Iijima Y., Ingeborg E. Nielsen, Bergin M.H., Candlish L., Zimov N.S., Zimov S.A., O’Neill N.T., Fogal P.F., Kivi R., Konopleva-Akish E.A., Verlinde J., Kustov V.Y., Vasel B., Ivakhov V.M., Viisanen Y., Intrieri J.M. I International Arctic Systems for Observing the Atmosphere. An International Polar Year Legacy Consortium. Bulletin of the American Meteorological Society. 2016, 97 (6): 1033 — 1056.

3. Frolov I.E., Ivanov V.V., Filchuk K.V., Makshtas A.P., Kustov V.Yu., Mahotina I.A., Ivanov B.V., Urazgildeeva A.V., Syoemin V.L., Zimina O.L., Krylov A.A., Bogin V.A., Zakharov V.Yu., Malyshev S.A., Gusev E.A., Baryshev P.E., Pilgaev S.V., Kovalev S.M., Turyakov A.B. Transarktika-2019: winter expedition in the Arctic Ocean on the R/V “Akademik Tryoshnikov”. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2019, 65 (3): 255 — 274.

4. Il’in G.N., Troitskii A.V. Determination the tropospheric delay of radio signal by the radiometric method. Radiofizika i kvantovaia elektronika. Radiophysics and Quantum Electronics. 2017, 60 (4): 326 — 335. [In Russian].

5. Basharinov A.E., Gurvich A.S., Egorov S.T. Radioizluchenie Zemli kak planet. Radio emission of the earth as a planet. Moscow: Nauka, 1974: 188 p. [In Russian].

6. Troitsky A.V., Gaykovich K.P., Kadygrov E.N., Kosov A.S., Gromov V.A. Thermal sounding of the atmosphere boundary layer in oxygen absorption band center. IEEE Trans. on Geoscience and Remote Sensing. 1993, 31 (1): 116 — 120. [In Russian].

7. Westwater E.R., Han Y., Irisov V.G., Leuvskiy V., Kadygrov E.N., Viazankin A.S. Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison of experiments. Journal of Atmospheric, and Oceanic Technology. 1999, 16: 805 — 818.

8. Folomeev V.V., Kadygrov E.N., Miller E.A., et al. Advanced Microwave System for Measurement of ABL Thermal Stratification in Polar Region. Proceedings of WMO Techn. Conference on Meteorological Instruments and Methods of Observations. Helsinki, Finland, 2010: 1 — 6.

9. EPA. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers. U. S. Environmental Protection Agency Region 10 Office of Environmental Assessment and U. S. Environmental Protection Agency Office of Air Quality Planning and Standards. FINAL 0611, 2011: 215 p.

10. Stepanenko V.D., Shchukin G.G., Bobylev L.P., Matrosov S.Iu. Radioteplolokatsiia v meteorologii. Radioteplolokatsionnye metody opredeleniia kharakteristik vlagosoderzhaniia oblachnoi atmosfery. Radio-infrared detection in meteorology. Radio-infrared detection methods for determining moisture content of cloud atmosphere. Leningrad: Gidrometeoizdat, 1987: 280 p. [In Russian].

11. Burova L.P. Vlagooborot v atmosfere Arktiki. Moisture in the Arctic atmosphere. Leningrad: Gidrometeoizdat, 1983: 128 p. [In Russian].

12. Burova L.P., Luk’ianchikova N.I. Water vapor distribution in the Arctic atmosphere in clear and overcast conditions. Meteorologiia i gidrologiia. Meteorology and Hydrology. 1996, 1: 35 — 42. [In Russian].

13. Kahl J.D. Characteristics of the low-level temperature inversion along the Alaskan Arctic Coast. Int. J. Climatol. 1990, 10: 537 — 548.

14. Serreze M.C., Kahl J.D., Schnell R.C. Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J. Climate. 1992, 5: 615 — 629.

15. Andreas E.L., Claffey K.J., A.P. Makshtas A.P. Low-level atmospheric jets and inversions over the Western Weddell sea. Boundary-Layer Meteorology. 2000, 97: 459 — 486.


Review

For citations:


Makshtas A.P., Il’in G.N., Bykov V.Yu., Miller E.A., Troitsky A.V., Kustov V.Yu., Bolshakova I.I., Rize D.D. The experience of remote temperature-water content sounding of atmosphere during drift of R/V “Akademik Tryoshnikov”. Arctic and Antarctic Research. 2020;66(3):349-363. (In Russ.) https://doi.org/10.30758/0555-2648-2020-66-3-349-363

Views: 656


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)