Features of modern climate changes in the Arctic and their consequences
https://doi.org/10.30758/0555-2648-2020-66-4-446-462
Abstract
The paper is based on the results reported in an invited speaker presentation at the scientific conference dedicated to the 100th anniversary of AARI in March 2020. The features of present-day rapid climate changes in the Arctic and their consequences are assessed. The presented results include those obtained in the framework of the program of the Presidium of the Russian Academy of Sciences "Climate change: causes, risks, consequences, problems of adaptation and regulation" and the Russian-German project QUARCCS (QUAntifying Rapid Climate Change in the Arctic: regional feedbacks and large-scale impacts). An assessment is made of the relative contribution of natural and anthropogenic factors to the formation of temperature trends at different time horizons in the Arctic. In view of the rapid changes of the Arctic climate, the prospects of the Northern Sea route are examined. According to the estimates obtained, the dominant role of radiative forcing is manifested in the Arctic latitudes on time scales of about half a century or more.
New climatic phenomena (in particular, the formation of craters in the Yamal Peninsula under the conditions of melting permafrost) and new effects (including the change in the trends of changes in sea waves in the waters of the Arctic basin) indicate the achievement of a certain critical level of regional and global warming, comparable to the warming of the Holocene Climate Optimum. At the same time, modern climate models can not only reproduce the key features of current climatic regimes and their variability, but also provide adequate predictive estimates even for complex processes in the Arctic.
About the Author
I. I. MokhovRussian Federation
Moscow
References
1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T.F. Stocker, D. Qin, G.-K. Plattner et al. (eds.). Cambridge, New York: Cambridge Univ. Press, 2013: 1535 p.
2. Vtoroy otsenochnyy doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoy Federatsii. Second Roshydromet assessment report on climate change and its consequences in Russian Federation. Moscow: Federal Service for Hydrometeorology and Environmental monitoring (Roshydromet), 2014: 1008 p. [In Russian].
3. Mokhov I.I. Contemporary climate changes in the Arctic. Herald of the Russian Academy of Sciences. 2015, 85 (3): 265-271.
4. Alekseev G.V., Radionov V.F., Smolyanitsky V.M., Filchuk K.V. Results and prospects of the climatestudies and climate service in the Arctic. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2018, 64 (3): 262-269. [In Russian].
5. Mokhov I.I. Contemporary climate changes: Anomalies and trends. IOP Conf. Series: Earth and Environmental Science. 2019, 231: 012037.
6. Mokhov I.I., Smirnov D.A. Contribution of greenhouse gas radiative forcing and Atlantic Multidecadal Oscillation to surface air temperature trends. Russian Meteorology and Hydrology. 2018, 43 (9): 557-564.
7. Mokhov I. I., Parfenova M.P. Features of variability of the Antarctic and Arctic sea ice in recent decades against the background of global and regional climatic changes. Voprosy geografii. Problems of Geography. 2020, 150 (Exploration of Antarctica): 304-319. [In Russian].
8. Mokhov I.I., Khon V.Ch., Prokof’eva M.A. New model estimates of changes in the duration of the navigation period for the Northern Sea Route in the 21st century. Doklady Earth Sciences. 2016, 468 (2): 641-645.
9. Khon V.C., Mokhov I.I., Semenov V.A. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations. Environ. Res. Lett. 2017, 12 (2): 024010. doi:10.1088/1748-9326/aa5841.
10. Kibanova O.V., Eliseev A.V., Mokhov I.I., Khon V.Ch. Variations in the duration of the navigation period along the Northern Sea Route in the 21st century dased on simulations with an ensemble of climatic models: Bayesian estimates. Doklady Earth Sciences. 2018, 481 (1): 907-911.
11. Mokhov I. I. Assessment of the ability of contemporary climate models to assess adequately the risk of possible regional anomalies and trends. Doklady Earth Sciences. 2018, 479 (2): 482-485.
12. Tislenko D.I., Ivanov B.V., Smolyanitky V.M., Svyashchennikov P.N., Isaksen K., Herdis M. Seasonal and long-term changes of sea ice extent in the Svalbard archipelago area during 1979-2015. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2016, 3 (109): 50-59. [In Russian].
13. Meleshko V.P., Mirvis V.M., Govorkova V.A., Baidin A.V., Pavlova T.V., Lvova T.Yu. The Arctic climate warming and extremely cold winters in North Eurasia during 1979-2017. Russian Meteorology and Hydrology. 2019, 44: 223-230.
14. Semenov V.A., Mokhov I.I., Latif M. Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades. Izv. Atmos. Ocean. Phys. 2012, 48: 355-372.
15. Mokhov I.I., Timazhev A.V. Atmospheric blocking and changes in its frequency in the 21st century simulated with the ensemble of climate models. Russian Meteorology and Hydrology. 2019, 44: 369-377.
16. Akperov M.G., Mokhov I.I., Dembitskaya M.A., Parfenova M. R. Lapse rate peculiarities in the Arctic from reanalysis data and model simulations. Russian Meteorology and Hydrology. 2019, 44: 97-102.
17. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I.I., Semenov V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environ. Res. Lett. 2019, 14: 045001. doi:10.1088/1748-9326/aafb82.
18. Intensivnye atmosfernye vihri i ih dinamika. Intense atmospheric vortices and their dynamics. Eds. I.I. Mokhov, M.V. Kurgan, O. G. Chkhetiani. Moscow: GEOS, 2018: 482 p. [In Russian].
19. Akperov M.G., Dembitskaya M.A., Mokhov I.I. Cyclone activity in the Arctic from reanalyses data and regional climate model simulations. Izvestiya RAN, seriya geograficheskaya. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2017, 6: 39-46. [In Russian].
20. Akperov M., Rinke A., Mokhov I.I., Matthes H., Semenov V.A., Adakudlu M., Cassano J., Christensen J.H., Dembitskaya M.A., Dethloff K., Fettweis X., Glisan J., Gutjahr O., Heinemann G., KoenigkT, KoldunovN.V, LapriseR., MottramR., Nikiema O., ParfenovaM, Scinocca J.F, SeinD., Sobolowski S., Winger K., Zhang W. Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX). IOP Publ.: Earth Environ. Sci. 2019, 231: 012003. doi:10.1088/1755-1315/231/1/012003.
21. Akperov M., Rinke A., Mokhov I., Matthes H., Semenov V. and the Arctic Cordex Team. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). J. Geophys. Res. Atmos. 2018, 123 (5): 2537-2554.
22. Akperov M., Rinke A., Mokhov I.I., Semenov V.A., Parfenova M.R., Matthes H., Adakudlu M., BobergF, Christensenen J.H., DembitskayaM.A., Dethloff K., FettweisX., Gutjahr O., Heinemann G., Koenigk T., Koldunov N.V., Laprise R., Mottram R., Nikiema O., Dmitry Sein D., Sobolowski S., Winger K., Zhang W. Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Glob. Planet. Change. 2019, 182: 103005.
23. Zahn M., Akperov M., Rinke A., Feser F., Mokhov I.I. Trends of cyclone characteristics in the Arctic and their patterns from different re-analysis data. J. Geophys. Res. 2018, 123 (5): 2537-2551.
24. Sitnov S.A., Mokhov I.I. Anomalies in the atmospheric methane content over Northern Eurasia in the summer of 2016. Doklady Earth Sciences. 2018, 480: 637-641.
25. Sitnov S.A., Mokhov I.I., Likhosherstova A.A. Exploring large-scale black-carbon air pollution over Northern Eurasia in summer 2016 using MERRA-2 reanalysis data. Atmos. Res. 2020, 235: 104763. doi: 10.1016/j.atmosres.2019.104763.
26. Kosobokova K.N., Hopcroft R.R. Diversity and vertical distribution of mesozooplankton in the Arctic’s Canada Basin. Deep Sea Res. Part II. Top Studies in Oceanography. 2010, 57: 96-110.
27. Sazhin A.F., Romanova N.D., Kopylov, A.I., Zabotkina E.A. Bacteria and viruses in Arctic sea ice. Oceanology. 2019, 59: 339-346. doi: 10.1134/S0001437019030196
28. ChoquetM., HatlebakkM., Dhanasiri A.K.S., Kosobokova K., Smolina I., Suireide J.E., Svensen C., Melle W., Kwastniewski S., Eiane K., Daase M, Tverberg V., Skreslet S., Bucklin A., Hoarau G. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 2017, 13: 20170588. doi: 10.1098/rsbl.2017.0588
29. Mokhov I.I., Semenov V.A., Khon V.C., Pogarsky F.A. Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation. Led i Sneg. Ice and Snow. 2013, 53 (2): 53-62. doi: 10.15356/2076-6734-2013-2-53-62. [In Russian].
30. Khon V., Mokhov I.I., Pogarskiy F., Babanin A., Dethloff K., Rinke A., Matthes H. Wave heights in the 21st century Arctic Ocean simulated with a regional climate model. Geophys. Res. Lett. 2014, 41 (8): 2956-2961.
31. Liu Q., Babanin A.V., Zieger S., Young I.R., Guan C. Wind and wave climate in the Arctic Ocean as observed by altimeters. J. Climate. 2016, 29: 7957-7975.
32. Arzhanov M.M., Malakhova V.V., Mokhov I.I. Simulation of the Conditions for the Formation and Dissociation of Methane Hydrate over the Last 130 000 Years. Doklady Earth Sciences. 2018, 480: 826-830. doi: 10.1134/S1028334X18060211.
33. Mokhov I.I., Eliseev A.V., Guryanov V.V. Model estimates of global and regional climate changes in the Holocene. Doklady Earth Sciences. 2020, 490: 23-27. doi: 10.1134/S1028334X20010067.
34. Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. A reconstruction of regional and global temperature for the past 11300 years. Science. 2013, 339: 1198-1201.
35. Kattsov V.M., Pavlova T.V. Expected Arctic surface air temperature changes through the 21st century: projections with ensembles of global climate models (cmip5 and cmip3). Trudy GGO. Proceed. Voeikov Main Geophysical Observatory. 2015, 579: 7-21. [In Russian].
Review
For citations:
Mokhov I.I. Features of modern climate changes in the Arctic and their consequences. Arctic and Antarctic Research. 2020;66(4):446-462. (In Russ.) https://doi.org/10.30758/0555-2648-2020-66-4-446-462