Mercury in components of ecosystems of Western Spitsbergen fijord in summer, 2017
https://doi.org/10.30758/0555-2648-2018-64-3-311-325
Abstract
The total content of mercury was studied in marine water, sediments and benthic organisms in Billefjord, Isfjord and Gronfjord (Western Spitsbergen) in 2017. The samples were collected between 21 and 24 of July 2017 on-board RV “Dalnie Zelentsy” of Murmansk Marine Biological Institute. Total mercury content was measured at chemical-analytical laboratory of the Russian Scientific Center on Spitsbergen in Barentsburg.
Total mercury concentration in the water did not exceed 10 ng/l in all fjords. In the surface sediments the highest concentrations of total mercury were found in Isfjord (median 55 ng/g d.w.) while the Billefjord sediments were characterised by the lowest concentrations (median 10.4 ng/g d.w.). This fact might reflect the differences in water circulation and therefore sediment accumulation peculiarities.
Total mercury data were obtained for benthic organisms of various feeding modes. Generally mercury levels were comparatively low (median 12.2 ng/g w.w.), however the highest concentrations were measured in the benthic fauna of Isfjord, specifically in polychaetes Maldania sarsi (max. 49.2 ng/g w.w.). Mercury accumulation in benthic organisms predominantly depended on their trophic level in the ecosystem and location in the fjord: benthic detritus feeders accumulate more mercury (median 25.0 ng/gw.w.).
Keywords
About the Authors
N. V. LebedevaRussian Federation
N. N. Fateev
Russian Federation
St. Petersburg
A. L. Nikulina
Russian Federation
St. Petersburg
O. L. Zimina
Russian Federation
E. A. Garbul
Russian Federation
References
1. Furness R.W. Heavy metals in the marine environment. CRCPress, BocaRaton, FL, 1990: 262 p.
2. Wiener J.G. Mercury exposed: advances in environmental analysis and ecotoxicology of a highly toxic metal. Environ. Toxicol. Chem. 2013, 32: 2175–2178. doi:10.1002/etc.2333
3. Dietz R., Outridge P.M., Hobson K.A. Anthropogenic contributions to mercury levels in present-day Arctic animals — a review. Sci. Total Environ. 2009, 407 (24): 6120–6131. doi:10.1016/j.scitotenv.2009.08.036
4. AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). Oslo, 2011: 193 p.
5. AMAP/UNEP, 2013: Technical Background Report for the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, 2013: 263 p.
6. Obrist D., Agnan Y., Jiskra M., Olson C.L., Colegrove D.P., Hueber J., Moore C.W., Sonke J.E., Helmig D. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature. 2017, 547: 201–204. doi:10.1038/nature22997
7. Campbell L.M., Norstrom R.J., Hobson K.A., Muir D.C., Backus S., Fisk A.T. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci. Total Environ. 2005, 351: 247–263. doi:10.1016/j.scitotenv.2005.02.043
8. Jæger I., Hop H., Gabrielsen G.W. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci. Total Environ. 2009, 407 (6): 4744–4751. doi:10.1016/j.scitotenv.2009.04.004
9. Rigét F., Braune B., Bignert A., Wilson S., Aars J., Born E., Dam M., Dietz R., Evans M., Evans T., Gamberg M. Temporal trends of Hg in Arctic biota, an update.Sci. Total Environ. 2011, 409: 3520–3526. doi:10.1016/j.scitotenv.2011.05.002
10. Ruus A., Øverjordet I.B., Braaten H.F.V., Evenset A., Christensen G., Heimstad E.S., Gabrielsen G.W., Borgå K.Methylmercury biomagnification in an Arctic pelagic food web. Environ. Toxicol. Chem. 2015, 34 (11): 2636–2643.doi:10.1002/etc.3143
11. Fort J., Grémillet D., Traisnel G., Amélineau F., Bustamante P. Does temporal variation of mercury levels in Arctic seabirds reflect changes in global environmental contamination, or a modification of Arctic marine food web functioning? Environmental Pollution. 2016, 211: 382–388. doi:10.1016/j.envpol.2015.12.061
12. Pomerleau C., Stern G.A., Pućko M., Foster K.L., Macdonald R.W., Fortier L. PanArctic concentrations of mercury and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in marine zooplankton. Sci. Total Environ. 2016, 551: 92–100. doi:10.1016/j.scitotenv.2009.04.004
13. Soerensen A.L., Jacob D.J., Schartup A.T., Fisher J.A., Lehnherr I., St Louis V.L., Heimbürger L.-E., Sonke J.E., Krabbenhoft D.P., Sunderland E.M. A mass budget for mercury and methylmercury in the Arctic Ocean. Global Biogeochemical Cycles. 2016, 30 (4): 560–575. doi:10.1002/2015GB005280
14. Alexander V. The influence of the structure and function of the marine food web on the dynamics of contaminants in Arctic Ocean ecosystems. Sci. Total Environ. 1995, 161: 593–603. doi: 10.1016/0048-9697(95)04394-G
15. Mercury: environmental aspects. Environmental health criteria 86. Geneva: WHO, 1989: 115 p.
16. Methylmercury. Environmental health criteria 101. Geneva: WHO, 1990: 144 p.
17. Dietz R., Riget F., Johansen P. Lead, cadmium, mercury and selenium in Greenland marine animals.Sci. Total Environ. 1996, 186 (1): 67–93.
18. Atwell L., Hobson K.A., Welch H.E. Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Environ. Toxicol. Chem.1998, 55 (5): 1114–1121.
19. Booth S., Zeller D. Mercury, food webs, and marine mammals: implications of diet and climate change for human health. Environmental Health Perspectives. 2005, 113: 521–526. doi:10.1289/ehp.7603
20. Hallanger I.G., Ruus A., Herzke D. Warner N.A., Evenset A., Heimstad E.S., Gabrielsen G.W., Borga K. Influence of season, location, and feeding strategy on bioaccumulation of halogenated organic contaminants in Arctic marine zooplankton. Environ. Toxicol. Chem. 2011, 30: 77–87. doi: 10.1002/etc.362
21. Bidleman T.F., Stern G.A., Tomy G.T. Scavenging amphipods: Sentinels for penetration of mercury and persistent organic chemicals into food webs of the deep Arctic Ocean. Environ. Sci. Technol. 2013, 47: 5553–5561. doi:10.1021/es304398j
22. Dietz R., Sonne C., Basu N. What are the toxicological effects of mercury in Arctic biota? Sci. Total Environ. 2013, 443: 775–790.
23. Øverjordet I.B., Altin D., Berg T. Acute and sub-lethal response to mercury in Arctic and boreal calanoid copepods. Aquatic Toxicology. 2014, 155: 160–165. doi:10.1016/j.aquatox.2014.06.019
24. Gray J.S. Biomagnification in marine systems: the perspective of an ecologist. Marine Pollution Bulletin. 2002, 45 (1–12): 46–52. doi:10.1016/S0025-326X(01)00323-X
25. Morel F. M., Kraepiel A. M., Amyot M. The chemical cycle and bioaccumulation of mercury. Annual review of ecology and systematics. 1998, 29 (1): 543–566. doi:10.1146/annurev.ecolsys.29.1.543
26. Savinova T. N., Gabrielsen G. W., FalkPetersen S. Chemical pollution in the Arctic and sub-arctic marine ecosystems: an overview of current knowledge. NINA-fagrapport. 1995, 1: 68 p.
27. Pacyna E.G., Pacyna J., Sundseth K., Munthe J., Kindbom K., Wilson S., SteenhuisenF., Maxson P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atm. Environ. 2010, 44: 2487–2499. doi:10.1016/j.atmosenv.2009.06.009
28. Granberg M.E., Ask A., Gabrielsen G.W. Local contamination in Svalbard: overview and suggestions for remediation actions. NorskPolarinstitutt, 2017: 49 p.
29. Lebedeva N.V., Zimina O.L., Fateev N.N., Nikulina A.L., Berchenko I.V., Meshcheryakov N.I. Mercuryinhydrobionts and their habitat in Grønfjorden, West Spitsbergen, in Early Springtime. Geochemistry. International. 2018, 5 (4): 332– 343.doi: 10.1134/S0016702918040031
30. Zhirkov I.A. Polikhety Severnogo Ledovitogo okeana. Polychaetes of the Arctic Ocean. Moscow: Janus-K, 2001: 632 p. [In Russian].
31. Gaevskaja N.S. (Ed.) Opredelitel’ fauny i flory severnyh morej SSSR. Key-identifierof fauna and flora of the northern seas of the USSR. Moscow: Soviet science, 1948: 736 p. [In Russian].
32. Kvasov B.I. Metody izogeometricheskoj approksimacii splajnami. Methods of isogeometric approximation by splines. Moscow: Fizmatlit, 2006: 360 p. [In Russian].
33. Gobeil C., Macdonald, R.W., Smith, J.N. Mercury profiles in sediments of the Arctic Ocean basins. Environmental Science & Technology. 1999, 33 (23): 4194-4198. doi: 10.1021/es990471
34. Dauval’ter V.A. Faktory formirovaniya khimicheskogo sostava donnykh otlozheniy. Factors of formation of the chemical composition of the sediment. Murmansk: MSTU Publ. 2002: 75 p. [In Russian].
35. Holte B., Dahle S., Gulliksen B., Næs K. Some macrofaunal effects of local pollution and glacier-induced sedimentation, with indicative chemical analyses, in the sediments of two Arctic fjords. Polar Biology. 1996, 16: 549–557. doi: 10.1007/BF02329051
36. Konovalov D., Renaud P.E., Berge J., Voronkov A.Y., Cochrane S.K.J. Contaminants, benthic communities, and bioturbation: potential for PAH mobilisation in Arctic sediments. Chemistry and Ecology. 2010, 26 (3): 197–208. doi: 10.1080/02757541003789058
37. Bloom N.S. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can. J. Fish. Aquat. Sci. 1992, 49: 1010–1017.
Review
For citations:
Lebedeva N.V., Fateev N.N., Nikulina A.L., Zimina O.L., Garbul E.A. Mercury in components of ecosystems of Western Spitsbergen fijord in summer, 2017. Arctic and Antarctic Research. 2018;64(3):311-325. (In Russ.) https://doi.org/10.30758/0555-2648-2018-64-3-311-325