Preview

Arctic and Antarctic Research

Advanced search

Internal drainage network and characteristics of the Aldegondabreen runoff (West Spitsbergen)

https://doi.org/10.30758/0555-2648-2021-67-1-67-88

Abstract

The polythermal Aldegondabreen is one of the most widely studied glaciers of the Nordenskjöld Land (Svalbard). However, the structure of its internal drainage network remains poorly understood. In order to determine the position and hydro-chemical characteristics of the surface and internal drainage channels of the glacier complex studies were carried out including ground penetrating radar (GPR) measurements and hydrological surveys. The GPR profiling performed in 2018–2020 identified four channels of internal drainage network, two of which are found along the northern side of the glacier in the area of cold ice and are subglacial. The other two are located in the area of temperate ice along the southern side of the glacier and are englacial, stretching at the cold-temperate surface. At the outlet grotto, the subglacial waters have a bicarbonate-calcium composition and low salinity (electrical conductivity 30–40 μS/cm), inherited from the surface meltwater streams that enter the moulins in the upper part of the glacier. No noticeable increase in mineralization occurs during the movement of the flow along the glacier bed. The englacial channels’ waters at the outlet grotto have the same bicarbonate-calcium composition but a higher salinity (electrical conductivity 100 μS/cm), which we attribute to the filtration through the rocks of the riegel near the Aldegonda terminus, or, alternatively, to the influx of the groundwater at the same spot. Measuring the hydrochemistry of the Aldegonda river tributaries both on the glacier’s surface, at the grottos and on the moraine in the valley made it possible to identify the zone of enrichment of the main volume of the low-mineralization glacial meltwater of bicarbonate-calcium composition by the high-mineralization (electrical conductivity up to 760 μS/cm) groundwater of sulphate-calcium composition coming from the springs on the riegel in front of the glacier’s terminus in the central part of the Aldegonda Valley. Presumably, the springs are fed by the deep filtration of melted glacial waters along the Aldegonda subglacial talik.

About the Authors

A. L. Borisik
State Scientific Center of the Russian Federation Arctic and Antarctic research Institute
Russian Federation

St. Petersburg



V. E. Demidov
State Scientific Center of the Russian Federation Arctic and Antarctic research Institute
Russian Federation

St. Petersburg



K. V. Romashova
State Scientific Center of the Russian Federation Arctic and Antarctic research Institute
Russian Federation

St. Petersburg



A. L. Novikov
State Scientific Center of the Russian Federation Arctic and Antarctic research Institute
Russian Federation

St. Petersburg



References

1. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody i rezul’taty geofizicheskikh i distantsionnykh issledovanii. Water in glaciers. Methods and results of geophysical and remote sensing studies. Moscow: GEOS, 2014: 528 p. [In Russian].

2. Irvine-Fynn T.D.L., Hodson A.J., Moorman B.J., Vatne G., Hubbard A.L. Polythermal Glacier Hydrology: A review. Review of Geophysics. 2011, 49. https://doi.org/10.1029/2010RG000350.

3. Mavliudov B.R. Vnutrennie drenazhnye sistemy lednikov. Internal drainage systems of glaciers. Moscow: Institut geografii RAN, 2006: 396 p. [In Russian].

4. Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I. I., Marchuk I.O. Distribution of cold and temperate ice in glaciers on the Nordenskiöld Land, Spitsbergen, from ground-based radio-echo sounding. Led i Sneg. Ice and Snow. 2019, 2 (59): 149–166. doi: 10.15356/2076-6734-2019-2-430. [In Russian].

5. Hansen L.U., Piotrowski J.A., Benn D.I., Sevestre H. A cross-validated three-dimensional model of an englacial and subglacial drainage system in a High-Arctic glacier. Journal of Glaciology. 2020, 66 (256): 278–290. doi: 10.1017/jog.2020.1.

6. Bælum K., Benn D.I. Thermal structure and drainage system of a small valley glacier (Tellbreen, Svalbard), investigated by ground penetrating radar. The Cryosphere. 2011, 5: 139–149. doi: 10.5194/tc-5-139-2011.

7. Stuart G., Murray T., Gamble N., Hayes K., Hodson A. Characterization of englacial channels by ground-penetrating radar: An example from Austre Brøggerbreen, Svalbard. J. of Geophys. Research. 2003, 108, B11: 2525. doi: 10.1029/2003JB002435.

8. Macheret Yu.Ya. Radiozondirovanie lednikov. Radio-echo sounding of glaciers. Moscow: Nauchnyi Mir, 2006: 389 p. [In Russian].

9. Macheret Yu.Ya., Zhuravlev A.B. Radar sounding of the Spitsbergen glaciers from a helicopter. Materialy Glatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1980, 37: 109–121. [In Russian].

10. Vasilenko E.V., Glazovsky A.F., Macheret Yu.Ya., Navarro F.H., Tokarev M.Yu., Kalashnikov A.Yu., Miroshnichenko D.E., Reznikov D.S. Radiophysical studies of Aldegondabreen in Svalbard in 1999. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2001, 90: 86–99. [In Russian].

11. Mavliudov B.R. About internal drainage of polythermal glaciers, Svalbard. Kompleksnye issledovaniia prirody Shpitsbergena: Sb. materialov V mezhdunar. konf. Comprehensive studies of the nature of Spitsbergen: collection of materials of the 5th Int. Conf. Apatity, 2005: 314–331. [In Russian].

12. Solov’ianova I.Iu., Tret’iakov M.V., Priamikov S.M. Features of the flow formation of the Aldegonda River (Spitsbergen). Kompleksnye issledovaniia prirody Shpitsbergena: Sb. materialov V mezhdunar. konf. Comprehensive studies of the nature of Spitsbergen: collection of materials of the 5th Int. Conf. Apatity, 2005: 348–355. [In Russian].

13. Izuchenie meteorologicheskogo rezhima i klimaticheskikh izmenenii v raione arkhipelaga Shpitsbergen: NTO ob ekspeditsii «Shpitsbergen-2005». Study of the meteorological regime and climatic changes in the Spitsbergen archipelago: scientific report. Expedition leader I.Iu. Solov’ianova. St. Petersburg, 2005: 157 p. Arctic and Antarctic Research Institute Repository ID № Р-5547. [In Russian].

14. Izuchenie meteorologicheskogo rezhima i klimaticheskikh izmenenii v raione arkhipelaga Shpitsbergen: NTO ob ekspeditsii «Shpitsbergen-2006». Study of the meteorological regime and climatic changes in the Spitsbergen archipelago: scientific report. expedition leader I.Iu. Solov’ianova. St. Petersburg, 2006: 210 p. Arctic and Antarctic Research Institute Repository ID № Р-5607. [In Russian].

15. Borisik A.L., Novikov A.L., Glazovsky A.F., Lavrentiev I.I., Verkulich S.R. The structure and dynamics of Aldegondabreen (West Spitsbergen) according to repeated radio-echo sounding data in 1999, 2018 and 2019 years. Led i Sneg. Ice and Snow. 2021, 1 (61): 26–37. doi: 10.31857/S2076673421010069. [In Russian].

16. Vladov M.L., Sudakova M.S. Georadiolokatsiia: ot fizicheskikh osnov do perspektivnykh napravlenii. Georadar: from physical fundamentals to promising directions. Moscow: GEOS, 2017: 240 p. [In Russian].

17. Sheriff R.E. Encyclopedic Dictionary of Applied Geophysics. Fourth edition. Society of Exploration Geophysicists, 2002: 442 p. doi: 10.1190/1.9781560802969.

18. Gokhman V.V. Distribution and conditions of formation of glacial icings on Spitsbergen. Polar Geography and Geology. 1987, 11:4: 249–260. doi: 10.1080/10889378709377334.

19. Mallinson L., Swift D.A., Sole A. Proglacial icings as indicators of glacier thermal regime: ice thickness changes and icing occurrence in Svalbard. Geografiska Annaler: Series A, Physical Geography. 2019, 101:4: 334–349. doi: 10.1080/04353676.2019.1670952.

20. Geological Map Svalbard 1:100 000. Isfjorden (G100). B9G. Norsk Polarinstitutt Temakart nr. 16, 1992.

21. Geological Map Svalbard 1:100 000. Van Mijenfjorden (G100). B10G. Norsk Polarinstitutt Temakart nr. 2, 1986.

22. Romashova K.V., Rumiantseva E.V., Tret’iakov M.V. Mineralization and ionic flow of rivers in the Grenfjord bay catchment area (Spitsbergen archipelago). Trudy VIII Mezhdunarodnoi nauchnoprakticheskoi konferentsii «Morskie issledovaniia i obrazovanie (MARESEDU-2019)». Proceedings of the VIII international scientific and practical conference “Marine research and education (MARESEDU-2019)”. Tver: PolyPress, 2020: 268–271. [In Russian].

23. Shreve R. Movement of water in glaciers. Journ. of Glaciology. 1972, 11 (62): 205–214. doi: 10.3189/S002214300002219X.

24. Rippin D., Willis I., Arnold N., Hodson A., Moore J., Kohler J., BjöRnsson H. Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models. Earth Surf. Process. Landforms. 2003, 28: 273–298. doi: 10.1002/esp.485.

25. Lavrentiev I. I., Macheret Yu.Ya., Holmund P., Glazovsky A.F. Hydrothermal structure and subglacial drainage network of Tavlebreen in Spitsbergen. Led i Sneg. Ice and Snow. 2011, 3 (115): 41–46. [In Russian].

26. Mavliudov, B.R., Kudikov A.V. Aldegonda glacier change since the early 20th century. Vestnik Kol’skogo nauchnogo tsentra RAN. Bulletin of the Kola Science Center RAS. 2018, 3 (10): 152–162. [In Russian].

27. Gliatsio-geofizicheskie issledovaniia: NTO ob ekspeditsii «Shpitsbergen-2019». Glaciogeophysical research: scientific report. expedition «Shpitsbergen-2019». Exp. leader A.L. Novikov. Saint-Petersburg, 2019: 152 p. Arctic and Antarctic Research Institute Repository ID № O-4101. [In Russian].


Review

For citations:


Borisik A.L., Demidov V.E., Romashova K.V., Novikov A.L. Internal drainage network and characteristics of the Aldegondabreen runoff (West Spitsbergen). Arctic and Antarctic Research. 2021;67(1):67-88. (In Russ.) https://doi.org/10.30758/0555-2648-2021-67-1-67-88

Views: 620


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)