Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009
https://doi.org/10.30758/0555-2648-2021-67-2-134-146
Abstract
The Arctic polar vortex is often affected by wave activity during its life cycle. The planetary Rossby waves propagating from the troposphere to the stratosphere occasionally lead to the displacement or splitting of the polar vortex, accompanied by sudden stratospheric warming (SSW). In January 2009, one of the largest SSWs was observed in the Arctic. In this work, the dynamics of the polar vortex during the 2009 SSW is considered using a new method that allows one to estimate the vortex area, the wind speed at the vortex edge, the mean temperature and ozone mass mixing ratio inside the vortex, based on the fact that the Arctic vortex edge at the 50 and 10 hPa pressure levels is determined by the geopotential values, respectively, 19.5. 104 and 29.5. 104 m2 /s2 , using the ERA5 reanalysis data. The application of this method is justified for the Arctic polar vortex, which is characterized by significant variability, especially during the period of its splitting. The splitting of the polar vortex in 2009 was observed on January 24 and 28, respectively, in the middle and lower stratosphere. About a week after the splitting, the vortices became closer in characteristics to small cyclones, which completely collapsed within 1–3 weeks. The influence of planetary wave activity on the polar vortex does not always lead to its breakdown. Short-term splitting of the polar vortex is sometimes observed for several days after which the polar vortex strengthens again and PSCs form inside the vortex. Such a recovery of the polar vortex is most likely to occur in the winter. Based on the analysis of the dynamics of the Arctic polar vortex for 1979–2020 and using the example of the 2009 SSW, we showed that when the vortex area decreases to less than 10 million km2 and the mean wind speed at the vortex edge decreases below 30 and 45 m/s, respectively, in the lower and middle stratosphere, the polar vortex becomes a small cyclone (with significantly higher temperatures within it), which usually collapses within 3 weeks.
Keywords
About the Authors
V. V. ZuevRussian Federation
Tomsk
E. S. Savelieva
Russian Federation
Tomsk
A. V. Pavlinsky
Russian Federation
Tomsk
References
1. Waugh D.W., Randel W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 1999, 56 (11): 1594–1613.
2. Waugh D.W., Polvani L.M. Stratospheric polar vortices. The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010, 190: 43–57.
3. Polvani L.M., Saravanan R. The three-dimensional structure of breaking Rossby waves in the polar wintertime stratosphere. J. Atmos. Sci. 2000, 57 (21): 3663–3685.
4. Plumb R.A. Planetary waves and the extratropical winter stratosphere. The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010, 190: 23‒41.
5. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining Sudden Stratospheric Warmings. Bull. Amer. Meteor. Soc. 2015, 96 (11): 1913–1928.
6. Limpasuvan V., Thompson D.W.J., Hartmann D.L. The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate. 2004, 17 (13): 2584–2596.
7. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007, 20 (3): 449–469.
8. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007, 20 (3): 470–488.
9. Matthewman N.J., Esler J.G., Charlton-Perez A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate. 2009, 22 (6): 1566‒1585.
10. Abridged final report of the seventh session of the commission for atmospheric sciences, Manila, 27 February — 10 March 1978. WMO Rep. 509. Geneva: WMO, 1978: 113 p.
11. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming. J. Geophys. Res. 2009, 114 (18): D18302.
12. Kuttippurath J., Nikulin G. A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004–2009/2010. Atmos. Chem. Phys. 2012, 12 (17): 8115–8129.
13. Torre L., Garcia R.R., Barriopedro D., Chandran A. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. J. Geophys. Res. 2012, 117 (4): D04110.
14. Vargin P.N., Kostrykin S.V., Rakushina E.V., Volodin E.M., Pogoreltsev A.I. Study of the variability of spring breakup dates and Arctic stratospheric polar vortex parameters from simulation and reanalysis data. Izvestiia RAN. Fizika atmosfery i okeana. Atmos. Ocean. Phys. 2020, 56 (5): 458–469. [In Russian].
15. Savenkova E.N., Kanukhina A.Yu., Pogoreltsev A.I., Merzlyakov E.G. Variability of the springtime transition date and planetary waves in the stratosphere. J. Atmos. Sol.-Terr. Phys. 2012, 90–91: 1–8.
16. Solomon S., Garcia R.R., Rowland F.S., Wuebbles D.J. On the depletion of Antarctic ozone. Nature. 1986, 321: 755–758.
17. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole. Geophys. Res. Lett. 2004, 31 (21): L21104.
18. Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999, 37 (3): 275–316.
19. Manney G.L., Zurek R.W. On the motion of air through the stratospheric polar vortex. J. Atmos. Sci. 1994, 51 (20): 2973‒2994.
20. Sobel A.H., Plumb R.A., Waugh D.W. Methods of calculating transport across the polar vortex edge. J. Atmos. Sci. 1997, 54 (18): 2241–2260.
21. Finlayson-Pitts B.J., Pitts J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. California: Academic Press, 2000: 969 p.
22. Whiteway J.A., Duck T.J., Donovan D.P., Bird J.C., Pal S.R., Carswell A.I. Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys. Res. Lett. 1997, 24 (11): 1387‒1390.
23. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N., Vitart F. The ERAInterim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 37 (656): 553–597.
24. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.-N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020, 146 (729): 1–51.
25. Lawrence Z.D., Manney G.L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 2018, 18 (18): 13547–13579.
26. Smith M.L., McDonald A.J. A quantitative measure of polar vortex strength using the function M. J. Geophys. Res. 2014, 119 (10): 5966–5985.
27. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004: 535 p.
28. Manney G.L., Schwartz M.J., Krüger K., Santee M.L., Pawson S., Lee J.N., Daffer W.H., FullerR.A., Livesey N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett. 2009, 36 (12): L12815.
29. Wang H., Fuller-Rowell T.J., Akmaev R.A., Hu M., Kleist D.T., Iredell M.D. First simulations with a whole atmosphere data assimilation and forecast system: The January 2009 major sudden stratospheric warming. J. Geophys. Res. 2011, 116 (12): A12321.
30. Klimenko M.V., Bessarab F.S., Sukhodolov T.V., Klimenko V.V., Koren’kov Yu.N., Zakharenkova I.E., Chirik N.V., Vasil’ev P.A., Kulyamin D.V., Shmidt Kh., Funke B., Rozanov E.V. Ionospheric effects of the sudden stratospheric warming in 2009: Results of simulation with the first version of the EAGLE model. Russ. J. Phys. Chem. B. 2018, 12 (4): 760–770.
31. Labitzke K., Kunze M. On the remarkable Arctic winter in 2008/2009. J. Geophys. Res. 2009, 114: D00I02.
32. Iida C., Hirooka T., Eguchi N. Circulation changes in the stratosphere and mesosphere during the stratospheric sudden warming event in January 2009. J. Geophys. Res. 2014, 119 (12): 7104–7115.
33. Funke B., Ball W., Bender S., Gardini A., Harvey V.L., Lambert A., López-Puertas M., Marsh D.R., Meraner K., Nieder H., Päivärinta S.-M., Pérot K., Randall C.E., Reddmann T., Rozanov E., Schmidt H., Seppälä A., Sinnhuber M., Sukhodolov T., Stiller G.P., Tsvetkova N.D., Verronen P.T., Versick S., von Clarmann T., Walker K.A., Yushkov V. HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmos. Chem. Phys. 2017, 17 (5): 3573–3604.
34. Tao M., Konopka P., Ploeger F., Grooß J.-U., Müller R., Volk C.M., Walker K.A., Riese M. Impact of the 2009 major sudden stratospheric warming on the composition of the stratosphere. Atmos. Chem. Phys. 2015, 15 (15): 8695–8715.
35. Gray L.J., Brown M.J., Knight J., Andrews M., Lu H., O’Reilly C., Anstey J. Forecasting extreme stratospheric polar vortex events. Nature Communication. 2020, 11: 4630.
36. Zuev V.V., Savelieva E. The role of the polar vortex strength during winter in Arctic ozone depletion from late winter to spring. Polar Sci. 2019, 22: 100469.
37. Zuev V.V., Savelieva E. Arctic polar vortex dynamics during winter 2006/2007. Polar Sci. 2020, 25: 100532.
Review
For citations:
Zuev V.V., Savelieva E.S., Pavlinsky A.V. Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009. Arctic and Antarctic Research. 2021;67(2):134-146. (In Russ.) https://doi.org/10.30758/0555-2648-2021-67-2-134-146