Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Влияние космической погоды на земную атмосферу

https://doi.org/10.30758/0555-2648-2021-67-2-177-207

Полный текст:

Аннотация

В обзоре обобщены экспериментальные данные о влиянии космической погоды на земную атмосферу. Показано, что высокоэнергичные солнечные протоны (SPE) оказывают мощное воздействие на фотохимические процессы в полярных областях и, соответственно, на атмосферную циркуляцию и планетарную облачность. Вариации солнечного УФ-излучения моделируют скорость спуска зональных ветров в экваториальной стратосфере в ходе квазидвухлетней осцилляции (QBO) и контролируют, таким образом, общую продолжительность (период) QBO цикла и, соответственно, вариации общего содержания озона в Антарктике. Геоэффективный солнечный ветер воздействует на систему катабатических ветров во всей южной полярной области и влияет на динамику южной осцилляции (ENSO).

Об авторах

О. А. Трошичев
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Россия

Санкт-Петербург



И. П. Габис
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Россия

Санкт-Петербург



А. А. Криволуцкий
ФГБУ Центральная аэрологическая обсерватория
Россия

Долгопрудный, Московская область



Список литературы

1. Thompson D.W.J., Wallace J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Let. 1998, 25 (9): 1297–1300.

2. Philander S.G.H., Rasmusson E.M. The Southern Oscillation and El Niño. Advances in Geophysics. 1985, 28A: 197–215.

3. Bazilevskaya G., Usoskin I., Flückiger E., Harrison R., Desorgher L., Bütikofer R., Krainev M., Makhmutov V., Stozhkov Y., Svirzhevskaya A., Svirzhevsky N., Kovaltsov G. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, 137: 149–173. doi:10.1007/s11214- 008-9339-y.

4. Mironova I., Aplin K., Arnold F., Bazilevskaya G., Harrison R., Krivolutsy A., Nicoll K., Rozanov E., Turunen E., Usoskin I. Energetic particle influence on the Earth’s atmosphere. Space Sci. Rev. 2015, 194: 1–96. doi:10.1007/s11214-015-0185-4.

5. Miroshnichenko L.I. Solar cosmic rays: 75 years of research. Physics-Uspekhi. 2018, 61(4): 323–352. doi: https://doi.org/10.3367/UFNe.2017.03.038091.

6. Mironova I., Bazilevskaya G., Kovaltsov G., Artamonov A., Rozanov E., Mishev A., Makhmutov V., Karagodin A., Golubenko K. Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements. Science of the Total Environment. 2019, 693: 133242. https:doi.org/10.1016/j.scitotenv.2019.07.048.

7. Usoskin, I.G., Kovaltsov G.A., Mironova I.A. Cosmic ray induced ionization model CRAC:CRII: An extension to the upper atmosphere. J. Geophys. Res. 2010, 115: D10302. doi:10.1029/2009JD013142.

8. Usoskin, I.G., Kovaltsov G.A., Mironova I.A., Tylka A.J., Dietrich W.F. Ionization effect of solar particle GLE events in low and middle atmosphere. Atmospheric Chemistry and Physics. 2011, 11 (5): 1979–1988. doi:10.5194/acp-11-1979-2011.

9. Tinsley B.A., Brown G.M., Scherrer P.H. Solar variability influences on weather and climate: possible connection through cosmic ray fluxes and storm intensification. J. Geophys. Res. 1989, 94: 14783–14792.

10. Pudovkin M.I., Veretenenko S.V. Cloudiness decreases associated with Forbush-decreases of the galactic cosmic rays. J. Atmos. Terr. Phys. 1995, 57: 1349–1355.

11. Svensmark H., Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage — a missing link in solar climate relations. J. Solar-Terr. Phys. 1997, 59: 1225–1232.

12. Todd M., Kniveton D. Changes in cloud cover associated with Forbush decreases of galactic cosmic rays. J. Geophys. Res. 2001, 106: 32031–32041.

13. Marsh N., Svensmark H. Galactic cosmic ray and El Nino-Southern Oscillation trends in International Satellite Cloud Climatology Project D2 low-cloud properties. J. Geophys. Res. 2003, 108: 4195. doi: 10.1029/2001JD 001264.

14. Kernthaler S., Toumi R., Haigh J. Some doubts concerning a link between cosmic ray fluxes and global cloudiness. Geophys. Res. Let. 1999, 26 (7): 863–865. https://doi.org/10.1029/1999GL900121.

15. Farrar P.D. Are cosmic rays influencing ocean cloud coverage — or is it only El Nino? Climate Change. 2000, 47: 7–15.

16. Palle E., Butler C.J. The proposed connection between clouds and cosmic rays: cloud behavior during the past 50–120 years. J. Atmos. Solar-Terr. Phys. 2002, 64: 327–337.

17. Kristjansson J.E., Staple A., Kristiansen J., Kaas E. A new look at possible connection between solar activity, clouds and climate. Geophys. Res. Let. 2002, 29: 2107 doi:10.1029/2002GL015646.

18. Harrison R.G., Carslaw K.S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 2003, 41: 1012–1026. doi: 10.1029/2002RG000114.

19. Rycroft M.J., Nicoll K.A., Aplin K.L., Harrison R.G. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90–91 (1):198–211, doi:10.1016/j.jastp.2012.03.015.

20. Tinsley B.A., Rohrbaugh R.P., Hei M., Beard K.V. Effects of image charges on the scavenging of aerosol particles by cloud droplets and on droplet charging and possible ice nucleation processes. J. Atmos. Sci. 2000, 57: 2118–2134.

21. Harrison R.G. Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci. Rev. 2000, 94: 381–396.

22. Marsh N., Svensmark H. Cosmic rays, clouds, and climate. Space Sci. Rev. 2000, 94: 215–230.

23. Carslaw K.S., Harrison R.G., Kirkby J. Cosmic rays, clouds, and climate. Science. 2002, 298: 1732–1737. doi:10.1126/science.1076964.

24. Tinsley B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere. Space Sci. Rev. 2000, 94: 231–258.

25. Mironova I., Tinsley B., Zhou L. The links between atmospheric vorticity, radiation belt electrons, and the solar wind. Advances in Space Research. 2012, 50 (6): 783–790. doi:10.1016/j. asr.2011.03.043.

26. Kazil J., Lovejoy E.R., Barth M.C., O’Brien K. Aerosol nucleation over oceans and the role of galactic cosmic rays. Atmos. Chem. Phys. 2006, 6: 4905–4924.

27. Kazil J., Harrison R.G., Lovejoy E.R. Tropospheric new particle formation and the role of ions. Space Sci. Rev. 2008, 137: 241–255. doi:10.1007/s11214-008-9388-2.

28. Kirkby J., Curtius J. et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature. 2011, 476 (7361): 429–433. doi:10.1038/nature10343.

29. Mironova I.A., Desorgher L., Usoskin I.G., Fluckige E.O., Butikofer R. Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 2008, 35: L18610. doi:10.1029/2008GL035120.

30. Mironova I.A., Usoskin I.G. Рossible effect of extreme solar energetic particle events of September– October 1989 on polar stratospheric aerosols: a case study. Atmos. Chem. Phys. 2013, 13: 8543–8550. doi:10.5194/acp-13-8543-2013.

31. Mironova I.A., Usoskin I.G. Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results. Environ. Res. Lett. 2014, 9: 015002. doi:10.1088/1748-9326/9/1/01502.

32. Rozanov E., Calisto M., Egorova T., Peter T., Schmutz W. Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 2012, 33: 483–501.

33. Veretenenko, S., Thejll P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Solar-Terr. Phys. 2004, 66: 393–405.

34. Veretenenko S.V. Comparative analysis of short-term effects of solar and galactic cosmic rays on the evolution of baric systems at middle latitudes. Bulletin of the Russian Academy of Sciences: Physics. 2017, 81 (2): 260–263.

35. Artamonova I., Veretenenko S. Galactic cosmic ray variation influence on baric system dynamics at middle latitudes. J. Atmos. Solar-Terr. Phys. 2011, 73 (2.3): 366–370.

36. Veretenenko S., Ogurtsov M. Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 2014, 54: 2467–2477.

37. Veretenenko S., Ogurtsov M. Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability. J Atmos Solar-Terr Phys. 2016, 149: 207–218.

38. Veretenenko S.V., Ogurtsov M.G. Influence of solar-geophysical factors on the state of the stratospheric polar vortex. Geomagn. Aeronomy. 2020, 60: 974–981.

39. Funke B., Baumgaertner A., Calisto M., Egorova T., Jackman C.H., Kieser J., Krivolutsky A., Lopez Puertas M., Marsh D., Reddmann T., Rozanov E., Salmi S., Sinnhuber M., Stiller G., Verronen P., Versick S., Clarmann T., Vyushkova T., Wieters N., Wissing J. Composition changes after the “Halloween” solar proton event: the High Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos. Chem. Phys. 2011, 11: 9089–9139. www. atmos-chem-phys.net/11/9089/2011/doi:10.5194/acp-11-9089-2011.

40. Krivolutsky A.A., Vyushkova T.Yu., Cherepanova L.A., Kukoleva A.A., Repnev A I., Banin M.V. Three-dimensional global photochemical model CHARM. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (1): 64–93.

41. Krivolutsky A.A., Repnev A.I. The impact of space factors on the Earth’s ozonosphere. Moscow: GEOS, 2009: 384 p.

42. Repnev A.I., Krivolutsky A.A. Variations in the chemical composition of the atmosphere from satellite measurements and their relation to fluxes of energetic particles of cosmic origin. Izvestiya RAS. Atmospheric and Oceans Physics. 2010, 46 (5): 535–562.

43. Krivolutsky A.A., Cherepanova L.A., Vyushkova T.Yu., Repnev A.I., Klyuchnikova A.V. Global circulation of the Earth’s atmosphere at altitudes of 0–135 km, calculated using the ARM model. Accounting for the contribution of solar activity. Geomagn. Aeronomy. 2015, 55 (6): 808–828.

44. Krivolutsky A.A., Kuminov A.A., Kukoleva A.V., Repnev A.I., Pereyaslova N.K. Proton activity of the Sun in the 23rd cycle of activity and changes in the ozonosphere: numerical modeling and analysis of observational data. Geomagn. Aeronomy. 2008, 48 (4): 450–464.

45. Krivolutsky A.A., Klyuchnikova A.V., Zakharov G.R., Vyushkova T.Yu., Kuminov A.A. Dynamical response of the middle atmosphere to solar proton event of July 2000: three-dimensional model simulations. Adv. Space Res. 2006, 37: 1602–1613.

46. Ondrášková A., Krivolutsky A., Kukoleva A., Vyushkova T., Kuminov A., Zakharov G. Response of the lower ionosphere to solar proton event on July 14 2000. Model simulations over the both poles. J. Atmos. Solar-Terr. Phys. 2008, 70: 539–545.

47. Baldwin M.P., Gray L.J., Dunkerton T.J., Hamilton K., Haynes P.H., Randel W.J., Holton J.R., Alexander M.J., Hirota I., Horinouchi T., Jones D.B.A., Kinnersley J.S., Marquardt C., Sato K., Takahashi M. The Quasi-biennial Oscillation. Reviews of Geophysics. 2001, 39 (2): 179–229.

48. Salby M., Callaghan P. Connection between the Solar Cycle and the QBO: The missing link. J. Climate. 2000, 13 (14): 2652–2663. doi: 10.1175/1520-0442(1999)0122.0.CO;2.

49. Fischer P., Tung K.K. A reexamination of the QBO period modulation by the solar cycle. J. Geophys. Res. 2008, 113: D07114. doi:10.1029/2007JD008983.

50. Gruzdev A.N., Bezverkhnii V.A., Schmidt H., Brasseur G.P. Effects of solar activity variations on dynamical processes in the atmosphere: Analysis of empirical data and modeling. Turbulence, Atmosphere and Climate Dynamics. IOP Conf. Series: Earth and Environmental Science. 2019, 231: 012021. doi:10.1088/1755-1315/231/1/012021.

51. Scaife A.A., Athanassiadou M., Andrews M., Arribas A., Baldwin M., Dunstone N., Knight J., MacLachlan C., Manzini E., Müller W., Pohlmann H., Smith D., Stockdale T. Predictability of the Quasi-Biennial Oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Let. 2014, 41: 1752–1758. https://doi.org/10.1002/2013GL059160.

52. Richter J.H., Butchart N., Kawatani Y., Bushell A., Holt L., Serva F., Kawatani Y., Bushell A.C., Holt L., Anstey J., Simpson I., Osprey S., Hamilton K., Braesicke P., Cagnazzo C., Chen C., Garcia R., Gray L., Kerzenmacher T., Lott F., McLandress C., Naoe H., Scinocca J., Stockdale T., Versick S., Watanabe S., Yoshida K. Response of the Quasi-Biennial Oscillation to a warming climate in global climate models. Quart. Jour. Royal Meteorol. Soc. 2020. https://doi.org/10.1002/qj.3749.

53. Osprey S.M., Butchart N., Knight J.R., Scaife A.A., Hamilton K., Anstey J.A., Schenzinger V., Zhang C. An unexpected disruption of the atmospheric quasibiennial oscillation. Science. 2016, 353 (6306): 1424–1427. doi: 10.1126/science.aah4156.

54. The quasi-biennial-oscillation (QBO) data serie. Available at: http://www.geo.fu-berlin.de/en/ met/ag/strat/produkte/qbo/index.html. (Accessed 15.01.2021).

55. Gabis I.P. Seasonal dependence of the quasi-biennial oscillation (QBO): New evidence from IGRA data. J. Atmos. Solar-Terr. Phys. 2018, 179: 316–336.

56. Integrated Global Radiosonde Archive (IGRA). Available at: https://www.ncdc.noaa.gov/dataaccess/weather-balloon/integrated-global-radiosonde-archive.(Accessed 15.01.2021)

57. Durre I., Vose R.S., Wuertz D.B. Overview of the integrated global radiosonde. Archive. J. of Climate. 2006, 19: 53–68.

58. Gabis I.P., Troshichev O.A. QBO cycle identified by changes in height profile of the zonal winds: new regularities. J. Atmos. Solar-Terr. Phys. 2005, 67: 33–44.

59. Gabis I.P., Troshichev O.A. The quasi-biennial oscillation in the equatorial stratosphere: seasonal regularity in zonal wind changes, discrete QBO-cycle period and prediction of QBO-cycle duration. Geomagn. Aeron. 2011, 51: 501–512.

60. Gabis I.P. Forecast of development of quasi-biennial oscillation in the equatorial stratospheric wind until April 2014. J. Atmos. Solar-Terr. Phys. 2012, 80: 79–91.

61. Gabis I.P. The validity of long-term prediction of quasi-biennial oscillation (QBO) as a proof of the exact seasonal synchronization of the equatorial stratospheric QBO cycle. J. Atmos. Solar-Terr. Phys. 2015, 124: 44–58.

62. Composite Mg II Index. Available at: http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii. (Accessed 15.01.2021).

63. Snow M., Weber M., Machol J., Viereck R., Richard E. Comparison of Magnesium II core-towing ratio observations during solar minimum 23/24. J. Space Weather Space Clim. 2014, 4: A04. doi:10.1051/swsc/2014001.

64. Gabis I.P. Quasi-biennial oscillation of the equatorial total ozone: A seasonal dependence and forecast for 2019–2021. J. Atmos. Solar-Terr. Phys. 2020, 207 (С): 105353.

65. Parish T.R., Bromwich D.H. The surface windfield over the Antarctic ice sheets. Nature. 1987, 328: 51–54.

66. Schwerdtfeger W. Weather and Climate of the Antarctic. New York: Elsevier, 1984: 261 p.

67. Parish T.R., Bromvich D.H. Continental-scale simulation of the Antarctic katabatic wind regime. J. Climate. 1991, 4: 135–146.

68. Egger J. Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci. 1985, 42: 1859–1867.

69. Bromwich D.H., Carrasco J.F., Liu Z., Tzeng R.Y. Hemispheric atmospheric variations and oceanographic impacts associated with katabatic surges across the Ross Shelf, Antarctica. J. Geophys. Res. 1993, 98 (D7): 13045–13062.

70. Troshichev O., Vovk V., Egorova L. IMF associated cloudiness above near-pole station Vostok: impact on wind regime in winter Antarctica. J. Atmos. Solar-Terr. Phys. 2008, 70: 1289–1300.

71. Troshichev O., Janzhura A. Space weather monitoring by ground-based means: PC index. Berlin, Heidelberg: Springer Verlag, 2012: 288 p. doi:10.1007/978-3-642-16803-1.

72. Troshichev O., Janzhura A. Temperature alterations on the Antarctic Ice sheet initiated by the disturbed solar wind. J. Atmos. Solar-Terr. Phys. 2004, 66: 1159–1172.

73. Troshichev O.A., Egorova L.V., Vovk V.Y. Evidence for influence of the solar wind variations on atmospheric temperature in the southern polar region. J. Atmos. Solar-Terr. Phys. 2003, 65: 947–956.

74. Troshichev O.A., Egorova L.V., Vovk V.Y. Influence of the solar wind variations on atmospheric parameters in the southern polar region. Adv. Space Res. 2004, 34: 1824–1829.

75. Troshichev O.A., Egorova L.V., Vovk V.Ya. Influence of the disturbed solar wind on atmospheric processes in Antarctica and El-Nino Southern Oscillation. Mem. Soc. Astronomy of Italia. 2005, 76: 890–898.

76. Troshichev O.A. Relationship between magnetic activity in the polar cap and atmospheric processes in the winter Antarctica. J. Atmos. Solar-Terr. Phys. 2010, 72: 943–950.

77. Troshichev O.A., Vovk V.Ya., Egorova L.V. Solar wind influence on atmospheric processes in winter Antarctica. Antarctica: The most interactive ice-air-ocean environment. Ed. J. Singh, H.N. Dutta. Nova Sci. Publishers, 2011.

78. Parish T.R. On the role of Antarctic katabatic winds in forcing large-scale tropospheric motions. J. Atmos. Sci. 1992, 49: 1374–1385.

79. Tinsley B.A., Heelis R.A. Correlations of atmospheric dynamics with solar activity: evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics. J. Geophys. Res. 1993, 98: 10375–10384.

80. Tinsley B.A., Zhou L. Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. J. Geophys. Res. 2006, 111, D16205: 1–23. doi: 10.1029/2005JD006988.

81. Frank-Кamenetsky A.V., Troshichev O.A., Burns G.B., Papitashvili V.O. Variations of the atmospheric electric field in the near-pole region related to the interplanetary magnetic field. J. Geophys. Res. 2001, 106: 179–190.

82. Van Loon H., Shea D.J. The Southern Oscillation, VI, Anomalies of sea level pressure on the southern hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon. Weather Rev. 1987, 115: 370–379.

83. Smith S.R., Stearns C.R. Antarctic pressure and temperature anomalies surrounding the minimum in the Southern Oscillation Index. J Geopys. Res. 1993, 98 (D7): 13071–13083.

84. Mann M.E., Jones P.D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 2003, 30 (15): 1820. doi:10.1029/2003GL017814.

85. Moberg A., Sonechkin D.M., Holmgren K., Datsenkoet N.D., Karlin W. Highly variable Northern hemisphere temperatures reconstructed from low- and high resolution proxy data. Nature. 2005, 433 (7026): 613–617.

86. Loehle C. A 2000-year Global temperature reconstruction based on not-treering proxies. Energy and Environment. 2007, 18 (7): 1049–1058.

87. Demezhko D.Y., Golovanova I.V. Climatic changes in the Urals over the past millennium? An analysis of geothermal and meteorological data. Climate of the Past. 2007, 3 (2): 237–242.


Для цитирования:


Трошичев О.А., Габис И.П., Криволуцкий А.А. Влияние космической погоды на земную атмосферу. Проблемы Арктики и Антарктики. 2021;67(2):177-207. https://doi.org/10.30758/0555-2648-2021-67-2-177-207

For citation:


Troshichev O.A., Gabis I.P., Krivolutsky A.A. Influence of cosmic weather on the Earth’s atmosphere. Arctic and Antarctic Research. 2021;67(2):177-207. https://doi.org/10.30758/0555-2648-2021-67-2-177-207

Просмотров: 49


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)