Polycyclic aromatic hydrocarbons in the snowpack of Yamal-Nenetz Autonomous region as indicators of anthropogenic source influence
https://doi.org/10.30758/0555-2648-2021-67-3-261-279
Abstract
A study of the content and composition of polycyclic aromatic hydrocarbons (PAHs) in the solid fraction of the snowpack is carried out on the territory of the Yamal-Nenetz Autonomous region, the north of Western Siberia. The total content of ten three-six nucleus PAHs was determined in the 51 samples collected at various distances from oil and gas producers and roads, near settlements, and in remote Arctic areas. The total PAH content varies from the lowest 0.3 ng/mg on the Bely Island, increasing to ~ 5 ng/mg in areas of new gas fields, and up to high 15 ng/mg in cities. Characteristic features of PAHs composition under the influence of gas flares emissions in central areas of high technogenic load are identified; they are a total content of up to 144 ng/mg and enrichment with low- molecular weight PAHs. In remote Arctic regions, high-molecular weight 5–6 nucleus PAHs dominate. Profiles of individual PAHs near gas flares, roads and residential sector facilities have been determined. The percentage contribution of the sum of 3, 4 and 5, 6-nucleus PAHs to the total PAH content indicates the gas flaring impact. Ratios of fluorantene to pyrene and benzene(b)fluorantene to benzene(ghi)perylene indicate changes in the snow PAHs composition with a decrease in the gas flaring contribution. The data obtained for the assessment of gas flaring emission impact on the PAHs composition in the snowpack are relevant to polar areas where new fields are being developed.
About the Authors
Yu. A. ZavgorodnyayaRussian Federation
Moscow
O. B. Popovicheva
Russian Federation
Moscow
V. O. Kobelev
Russian Federation
Salekhard
D. P. Starodymova
Russian Federation
Moscow
V. P. Shevchenko
Russian Federation
Moscow
N. S. Kasimov
Russian Federation
Moscow
References
1. Doklad ob ekologicheskoi situatsii v Iamalo-Nenetskom avtonomnom okruge v 2019 godu. Report on the environmental situation in the Yamalo-Nenets Autonomous Okrug in 2019. Available at: https:// dprr.yanao.ru/documents/active/74512/ (acсessed 30.01.2021).
2. Opekunov A.J., Opekunova M.G., Kukushkin S.U., Ganul A.G. Assessment of the ecological state of the natural environment of oil and gas production areas in the Yamalo-Nenets Autonomous Okrug. Vestnik SPbGU. Bulletin of St. Petersburg State University. 2012, 7 (4): 86–100. [In Russian].
3. Kobelev V.O., Popovitcheva O.B., Shinkaruk E.V., Bagbaljan E.V., Kolesnikov R.A., Novigatskij A.N. Acidity of atmospheric precipitation of the winter period in the areas of the Yamalo-Nenets Autonomous Okrug with various anthropogenic loads. Nauchnyy vestnik Jamalo-Nenetskogo avtonomnogo okruga. Scientific bulletin of the Yamalo-Nenets Autonomous Okrug. 2019, 1 (102): 81–88. [In Russian].
4. Pozhitkov R., Moskovchenko D., Soromotin A., Kudryavtsev A., Tomilova E. Trace elements composition of surface snow in the polar zone of northwestern Siberia: the impact of urban and industrial emissions. Environmental Monitoring and Assessment. 2020, 192: 215–229. doi: 10.1007/ s10661-020-8179-4
5. Ravindra K., Mittal A.K., Van Grieken R. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Reviews on Environmental Health. 2001, 16: 169–189. doi: 10.1515/REVEH.2001.16.3.169
6. Baek S.O., Field R.A., Goldstone M.E., Kirk P.W., Lester J.N., Perry R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water, Air and Soil Pollution. 1991, 60: 279–300. doi: 10.1007/BF00282628
7. Kokovkin V.V., Raputa V.F., Morozov S.V., Yaroslavtseva T.V. Polyaromatic Hydrocarbons in the Vicinity of the Major Highways of Novosibirsk. Himia v interesah ustojchivogo razvitija. Chemistry for sustainable development. 2016, 24: 491–497. doi: 10.15372/KhUR20160409. [In Russian].
8. Raputa V.F., Kokovkin V.V., Morozov S.V., Yaroslavtseva T.V. Organic carbon in the city territories of the south of West Siberia. Himia v interesah ustojchivogo razvitija. Chemistry for sustainable development. 2016, 24: 483–489. doi: 10.15372/KhUR20160408. [In Russian].
9. Zhidkin A.P., Gennadiev A.N., Lobanov A.A. Indication value of ratios of polycyclic aromatic hydrocarbons in the snow-soil system under different land use conditions.Vestnik Moskovskogo universiteta. Ser. 5: Geografija. Bulletin of Moscow University. Series Geography. 2017, 5: 24–31. [In Russian].
10. Gennadiev A.N., Zhidkin A.P., Koshovskii T.S. Factors and trends in the formation of natural– technogenic associations of polycyclic aromatic hydrocarbons in the snow–soil system. Doklady Earth Sciences. 2020, 490: 36–39. doi: 10.1134/S1028334X20010031
11. Dat N.-D., Chang M.B. Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment. 2017, 609: 682–693. doi: 10.1016/j. scitotenv.2017.07.204
12. Gouin T., Wilkinson D., Hummel S., Meyer B., Culley A. Polycyclic aromatic hydrocarbons in air and snow from Fairbanks, Alaska. Atmospheric Pollution Research. 2010, 1: 9–15. doi: 10.5094/APR.2010.002
13. Barbante C., Spolaor A., Cairns W.R., Boutron C. Man’s footprint on the Arctic environment as revealed by analysis of ice and snow. Earth Sci. Rev. 2017, 168: 218–231. https://doi.org/10.1016/j.earscirev.2017.02.010.
14. Abramova A., Chernianskii S., Marchenko N., Terskaya E. Distribution of polycyclic aromatic hydrocarbons in snow particulates around Longyearbyen and Barentsburg settlements, Spitsbergen. Polar Rec. (Gr. Brit). 2016, 52: 645–659. https://doi.org/10.1017/S0032247416000243.
15. Nemirovskaya I.A., Shevchenko V.P. Organic compounds and suspended particulate matter in snow of High Latitude Areas (Arctic and Antarctic). Atmosphere. 2020, 11 (9): 928. doi: 10.3390/atmos11090928
16. Semenov M.Yu., Marinaite I.I. Using the end-member mixing approach to apportion sources of polycyclic aromatic hydrocarbons in various environmental compartments. Environmental Earth Sciences. 2016, 75 (3): 207–218. doi: 10.1007/s12665-015-4969-3
17. Stogiannidis E., Laane R. Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicology. 2015, 234: 49–133. doi: 10.1007/978-3-319-10638-0_2
18. Khalili N.R., Schefft P.A., Holsen T.M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment. 1995, 29: 533–542. doi: 10.1016/1352-2310(94)00275-P
19. Tobiszewski M., Namiesnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution. 2012, 162: 110–119. doi: 10.1016/j.envpol.2011.10.025
20. Global Gas Flaring Reduction Partnership (GGFR). Available at: https://www.worldbank.org/en/programs/gasflaringreduction#7 (acсessed 20.09.2021).
21. Huang K., Fu J., Prikhodko V., Storey J., Romanov A., Hodson E., Cresko J.,Morozova I., Ignatieva Y., Cabaniss J. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation. J. Geophys. Research. 2015, 120: 11306–11333. doi: 10.1002/2015JD023358
22. Jazshenko N.G., Svarovskaja L.I., Alekseeva M.N. Environmental risk assessment of associated petroleum gas combustion in Western Siberia. Optika atmosfery i okeana. Atmospheric and ocean optics. 2014, 27 (6): 560–566. [In Russian].
23. Popovicheva O., Timofeev M., Persiantseva N., Jefferson M.A., Johnson M., Rogak S.N., Baldelli A. Microstructure and chemical composition of particles from small-scale gas flaring. Aerosol and Air Quality Research. 2019, 19 (10): 22050–2221. doi: 10.4209/aaqr.2019.04.0177
24. Raputa V.F. Experimental and numerical studies of aerosol impurities in the vicinity of the oil and gas flare. Vestnik NGU. Ser. Matematika, mehanika, informatika. Bulletin of NSU. Series: Mathematics, Mechanics, Computer Science. 2013, 13 (3): 96–102. [In Russian].
25. Manousakas M., Popovicheva O., Evangeliou N., Diapouli E., Sitnikov N., Shonija N., Eleftheriadis K. Aerosol carbonaceous, elemental and ionic composition variability and origin at the Siberian High Arctic, Cape Baranova. Tellus. Series B: Chemical and Physical Meteorology. 2020, 72: 1–14. doi.org/10.1080/16000889.2020.1803708
26. Schroeder W., Oliva P., Giglio L., Csiszar I.A. The New VIIRS 375 m active fire detection data product: algorithm description and initial assessment. Remote Sensing of Environment. 2014, 143: 85–96. doi: 10.1016/j.rse.2013.12.008
27. Novigatsky A.N., Lisitzin A.P. Concentration, composition, and fluxes of dispersed sedimentary material in the snow and ice cover of the Polar Arctic. Oceanology. 2019, 59 (3): 406–410. https://doi.org/10.1134/S0001437019030159
28. Jaffe D., Cerundolo B., Rickers J., Stolzberg R., Baklanov A. Deposition of sulfate and heavy metals on the Kola Peninsula. Science of The Total Environment. 1995, 160–161: 127–134. https://doi.org/10.1016/0048-9697(95)04350-A.
29. Zdanowicz C., Zheng J., Klimenko E., Outridge P.M. Mercury and other trace metals in the seasonal snowpack across the subarctic taiga-tundra ecotone, Northwest Territories, Canada. Applied Geochemistry. 2017, 82: P. 63–78. https://doi.org/10.1016/j.apgeochem.2017.04.011.
30. Pomeroy J.W., Davies T.D., Jones H.G., Marsh P., Peters N.E., Tranter M. Transformations of snow chemistry in the boreal forest: Accumulation and volatilization. Hydrological Processes. 1999, 13 (14–15): 2257–2273.
31. Zavgorodnyaya Yu.A., Chikidova A.L., Biryukov M.V., Demin V.V. Polycyclic aromatic hydrocarbons in atmospheric particulate depositions and urban soils of Moscow, Russia. Journal of Soils and Sediments. 2019, 19: 3155–3165. doi: 10.1007/s11368-018-2067-3
32. Vasilevich M.I., Beznosikov B.A., Gabov D.H. Polycyclic aromatic hydrocarbons in the snow cover of the background areas of the taiga zone of the European northeast of Russia. Geoekologia. Inzhenernaya geologiya. Gidrologiya. Geokriologiya. Geoecology. Engineering geology. Hydrogeology. Geocryology. 2014, 4: 337–343. [In Russian].
33. Hsu W.T., Liu M.C., Hung P.C., Chang S.H., Chang M.B. PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials. 2016, 318: 32–40. doi: 10.1016/j.jhazmat.2016.06.038
34. Zhidkin A.P., Gennadiev A.N., Koshovskii T.S. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver Oblast). Eurasian Soil Science. 2017, 50 (3): 296–304. doi: 10.1134/S1064229317030139
35. Gennadiev A.N., Zhidkin A.P., Koshovskii T.S. Factors and trends in the formation of natural– technogenic associations of polycyclic aromatic hydrocarbons in the snow–soil system. Doklady Earth Sciences. 2020, 490: 36–39. doi: 10.1134/S1028334X20010031
Review
For citations:
Zavgorodnyaya Yu.A., Popovicheva O.B., Kobelev V.O., Starodymova D.P., Shevchenko V.P., Kasimov N.S. Polycyclic aromatic hydrocarbons in the snowpack of Yamal-Nenetz Autonomous region as indicators of anthropogenic source influence. Arctic and Antarctic Research. 2021;67(3):261-279. (In Russ.) https://doi.org/10.30758/0555-2648-2021-67-3-261-279