Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Движение судов в тертых льдах: результаты исследований

https://doi.org/10.30758/0555-2648-2021-67-4-406-424

Полный текст:

Аннотация

В статье приведен обзор исследований, посвященных изучению движения судов в тертых льдах. Показано, что для определения ледового сопротивления судна в указанных условиях используются теоретические методы исследования и метод физического моделирования в ледовых бассейнах. В работе прослежена эволюция теоретических моделей, применяемых для расчета. Описаны методы физического моделирования тертого льда в ледовом бассейне, обсуждены основные трудности, возникающие при экспериментальных исследованиях. Рассмотрено активно развивающееся в настоящее время компьютерное моделирование движения судна в тертых льдах на основе методов дискретных элементов. Дано описание методов изучения работы движителей судов в тертых льдах.

Об авторе

К. Е. Сазонов
Крыловский государственный научный центр; Санкт-Петербургский государственный морской технический университет
Россия

Санкт-Петербург



Список литературы

1. Безопасность плавания во льдах / А.П. Смирнов, Б.С. Майнагашев, В.А. Голохвастов, Б.М. Соколов. М.: Транспорт, 1993. 335 с.

2. Сазонов К.Е. Развитие ледовой ходкости судов в ХХI веке // Труды Крыловского государственного научного центра. 2018. Вып. 2 (384). С. 9–28. doi: 10.24937/2542-2324-2018-2-384-9-28.

3. Mellor M. Ship resistance in thick brash ice // Cold Reg. Sci. Technol. 1980. V. 3 (4). P. 305–321.

4. Kannari P. Measurements of characteristics and propulsion performance of a ship in old iceclogged channels // Proc. of the 7 International Conference on Port and Ocean Engineering in Arctic Conditions, POAC-83, Espoo, Finland. 1983.V. II. Р. 600–619.

5. Sandkvist J. Brash ice behaviour in frequented ship channels. WREL report series A. University of Luleå. 1986. V. 139. 132 р.

6. Ettema R., Huang H.-P. Ice Formation in Frequently Transited Navigation Channels. CRREL Special Report 90-40. 1990. 120 p.

7. Riska K., Wilhelmson M., Englund K., Leiviska T. Performance of Merchant Vessels in the Baltic. Winter Navigation Research Board, Res. Rpt. 1997. V. 52. 72 p.

8. Karulin E.B., Karulina M.M., Tarovik O.V. Analytical Investigation of Navigation Channel Evolution in Severe Ice Conditions // Proceedings of Ocean and Polar Engineering Conference ISOPE-2018, Sapporo, Japan. URL: https://www.researchgate.net/publication/326190461_Analytical_Investigation_of_Navigation_Channel_Evolution_in_Severe_Ice_Conditions (дата обращения 05.12.2021).

9. Riska K., Bridges R., Shumovskiy S., Thomas C., Coche E., Bonath V., Tobie A., Chomatas K., Caloba Duarte de Oliveira R. Brash ice growth model — development and validation // Cold Regions Science and Technology. 2019. V. 157. P. 30–41. doi.org/10.1016/j.coldregions.2018.09.004.

10. Ettema R., Urroz-Aguirre E. Friction and cohesion in ice rubble reviewed // Cold Regions Engineering. 1991. V. 12. P. 317–326.

11. Bonath V., Zhaka V., Sand B. Field measurements on the behavior of brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/41321807_Field_measurements_on_the_behavior_of_brash_ice (дата обращения 05.12.2021).

12. Matala R., Skogström T. Soil mechanics measurement methods applied in model brash ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).

13. Matala R. Investigation of model-scale brash ice properties // Ocean Engineering. 2021. V. 225. doi.org/10.1016/j.oceaneng.2020.108539

14. Riska K. The background of the powering requirements in the Finnish — Swedish ice class rules // Maritime Research Seminar’99, VVT Symposium 199, Espoo, Finland. 2000. P. 91–106.

15. Juva M., Riska K. On the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2002. V. 53. 81 p.

16. Ice Class Regulations and the Application Thereof TRAFICOM/68863/03.04.01.00/2021. URL: https://www.traficom.fi/en/transport/maritime/ice-classes-ships (дата обращения 05.12.2021).

17. Цытович Н.А. Механика грунтов. М.: Высшая школа, 1973. 280 с.

18. Lee J., Kim G., Kim I., Kim D., Byun B. Effect of inter-particle strength on K0 correlation for granular materials // Proceedings of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, ISC 2016 Australian Geomechanics Society, Sydney, Australia. Australian Geomechanics Society. 2016. P. 1003–1008.

19. Сазонов К.Е. Морская ледотехника. СПб.: СПбГМТУ, 2019. 311 с.

20. Таровик О.В. Модели для прогнозирования параметров рейсов судов в Арктике: существующие подходы и возможные пути развития // Арктика: экология и экономика. 2021. T. 11. C. 422–435.

21. Ritvanen H. Analysis of the influence of the channel profile validating the power requirement in the finnish-swedish ice class rules. Winter Navigation Research Board, Res. Rpt. 2014. V. 66. 25 p.

22. Bridges R. Geometric Model on the Evolution of Brash Ice Channels // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16, 2020. P. 617–621. URL: https://www.researchgate.net/publication/344774965_Hydrodynamic_analysis_of_a_floating_hybrid_renewable_energy_system (дата обращения 05.12.2021).

23. Karulina M.M., Karulin E.B., Tarovik O.V. Extension of FSICR method for calculation of ship resistance in brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/333967969_Extension_of_FSICR_method_for_calculation_of_ship_resistance_in_brash_ice_channel (дата обращения 05.12.2021).

24. Dobrodeev A.A., Sazonov K.E. Ice resistance calculation method for a ship sailing via brash ice channel // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/335263770_Ice_resistance_of_ships_in_brash_ice_channel_calculation_method (дата обращения 05.12.2021).

25. Добродеев А.А., Сазонов К.Е. Метод расчета ледового сопротивления судна при движении в канале тертого льда // Труды Крыловского государственного научного центра. 2019. № 3 (389). С. 11–21. doi: 10.24937/2542-2324-2019-3-389-11-21.

26. Hopkins M.A. Four stages of pressure ridging // J. Geophys. Res. 1998. V. 103 (C10). P. 21883–21891.

27. Hansen E., Loset S. Modeling floating offshore units moored in broken ice: model description // Cold Regions Science and Technology. 1999. V. 29. P. 97–106.

28. Lau M., Lawrence K.P., Rothenburg L. Discrete element analysis of ice loads on ships and structures // Ships and Offshore Structures. 2011. V. 6 (3). P. 211–221.

29. Van den Berg M., Lubbad R. The application of a non-smooth discrete element method in ice rubble modelling // Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2015 Trondheim, Norway. URL: https://www.researchgate.net/publication/283095075_The_application_of_a_non-smooth_discrete_element_method_in_ice_rubble_modelling (дата обращения 05.12.2021).

30. Servin M., Wang D., Lacoursière C., Bodin K. Examining the smooth and nonsmooth discrete element approaches to granular matter // Int. J. Numer. Methods Eng. 2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/nme.4612 (дата обращения 05.12.2021).

31. Metrikin I., Løset S. Nonsmooth 3D discrete element simulation of a drillship in discontinuous ice // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9-13, 2013. Espoo, Finland. URL: https://www.researchgate.net/publication/256842759_Nonsmooth_3D_Discrete_Element_Simulation_of_a_Drillship_in_Discontinuous_Ice (дата обращения 05.12.2021).

32. Konno A., Nakane A., Kanamori S. Validation of numerical estimation of brash ice channel resistance with model test // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/ Papers/2013/pdf/POAC13_143.pdf (дата обращения 05.12.2021).

33. Guo C.Y., Zhang Z.T., Tian T. P., Li X.Y., Zhao D.G. Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions // China Ocean Eng. 2018. V. 32. № 5. P. 546–556. doi: https://doi.org/10.1007/s13344-018-0057-2.

34. Koivurova J. Simulation of Ship-Ice Interaction in a Brash Ice Channel. M. Sc. Thesis. Aalto University, 2020. URL: https://aaltodoc.aalto.fi/handle/123456789/42697 (дата обращения 05.12.2021).

35. Luo W., Jiang D., Wu T., Guo C., Wang Ch., Deng R., Dai S. Numerical simulation of an ice-strengthened bulk carrier in brash ice channel. URL: https://www.semanticscholar.org/paper/Numerical-simulation-of-an-ice-strengthened-bulk-in-Luo-Jiang/e70263687be90c853fd28207b069bd3d712cabc2 (дата обращения 05.12.2021).

36. Bridges R., Riska K., Suominen M., Haase A. Experimental Tests on Brash Ice Channel Development // Proceedings of the Thirtieth International Ocean and Polar Engineering Conference Shanghai, China, October 11–16. 2020. P. 639–643.

37. Matala R. Channel resistance in full scale and in model scale. Winter Navigation Research Board, Res. Rpt. 2020. V. 107. 20 p.

38. Jeong S.-Y., Jang J., Kang K.-J., Kim H.-S. Implementation of ship performance test in brash ice channel // Ocean Engineering. 2017. V. 140. P. 57–65.

39. Matsuzawa T., Shimoda H., Wako D., Uto S., He Q., Watanabe S. Load-Varying Methods for Ship Power Estimation in Brash Ice Channel by Ice Tank Model Test // Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions June 11–16, 2017, Busan, Korea. URL: https://www.poac.com/Papers/2017/pdf/POAC17_124_Takatoshi.pdf (дата обращения 05.12.2021).

40. Wang J., Lau M., Lee C. J., Cho S.-R. Modeling of Brash Ice Channel and Tests with Model CCGS Terry Fox // International Journal of Offshore and Polar Engineering. 2009. V. 19. P. 206–213.

41. Krupina N., Chernov A., Likhomanov V., Maksimova P., Savitskaya A. The ice tank study of ice performance of a large LNGC in the old channel // Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2013. Espoo, Finland. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).

42. Matala R., Gong H. The effect of ice fragment shape on model-scale brash ice material properties for ship model testing // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.researchgate.net/publication/353637533_The_effect_of_ice_fragment_shape_on_model-scale_brash_ice_material_properties_for_ship_model_testing (дата обращения 05.12.2021).

43. Сазонов К.Е., Добродеев А.А., Чепраков Н.В., Нечаев Д.А., Кильдеев Р.И. Устройство для образования канала моделируемого ледяного покрова в ледовом опытовом бассейне. Патент на изобретение 2737841 C1, 03.12.2020. Заявка № 2020111377 от 17.03.2020.

44. Von Bock und Polach R., Molyneux D. Model ice: a review of its capacity and identification of knowledge gaps // Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering OMAE2017 June 25–30, 2017, Trondheim, Norway. URL: https://www.researchgate.net/publication/318093280_Model_Ice_A_Review_of_its_Capacity_and_Identification_of_Knowledge_Gaps (дата обращения 05.12.2021).

45. Kostilainen V. Performance of marine propellers in ice-clogged channels. Winter Navigation Research Board, Res. Rpt. 1981. V. 33. 26 p.

46. Juurmaa K., Segercrantz H. On Propulsion and its Efficiency in Ice // Sixth Ship Technology and Research (STAR) Symposium, Proceedings SNAME, Ottawa, 1981. P. 229–237.

47. Борусевич В.О., Русецкий А.А., Сазонов К.Е., Соловьев И.А. Современные гидродинамические лаборатории. СПб.: ФГУП «Крыловский государственный научный центр», 2019. 316 с.

48. Haskins K.L., Courville Z.R., Sodhi D.S., Stanley J.M., Zabilansky L.J., Story J.M. Interaction between Brash Ice and Boat Propulsion Systems. Cold Regions Research and Engineering Laboratory US Army Engineer Research and Development Center, ERDC TR-14-1. 2014. 85 p.

49. Karulina M.M., Karulin E.B. Analytical investigation of propeller operation in brash ice // Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions June 14–18, 2021, Moscow, Russia. URL: https://www.poac.com/Proceedings/2021/POAC21-032.pdf (дата обращения 05.12.2021).

50. De Carolis G., Olla P., Pignagnoli L. Effective viscosity of grease ice in linearized gravity waves // J. Fluid Mechanics. 2005. V. 535. P. 369–381.

51. Справочник по теории корабля. T. 1. Гидродинамика. Сопротивление движению судов. Судовые движители. Л.: Судостроение, 1985. 768 c.

52. Eronen H., Riska K. Possibilities to decrease the attained EEDI of the finnish merchant ships. Winter Navigation Research Board, Res. Rpt. 2014. V. 78. 26 p.

53. Bridges R., Riska K., Haase A. Experimental Tests on the Consolidation of Broken and Brash Ice // Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions June 9–13, 2019, Delft, The Netherlands. URL: https://www.researchgate.net/publication/337007935_Experimental_Tests_on_the_Consolidation_of_Broken_and_Brash_Ice(дата обращения 05.12.2021).


Рецензия

Для цитирования:


Сазонов К.Е. Движение судов в тертых льдах: результаты исследований. Проблемы Арктики и Антарктики. 2021;67(4):406-424. https://doi.org/10.30758/0555-2648-2021-67-4-406-424

For citation:


Sazonov K.E. Ship operation in brash ice: results of investigations. Arctic and Antarctic Research. 2021;67(4):406-424. (In Russ.) https://doi.org/10.30758/0555-2648-2021-67-4-406-424

Просмотров: 96


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)