Preview

Arctic and Antarctic Research

Advanced search

Ice wedges in anomalous magnetic field: numerical modeling

https://doi.org/10.30758/0555-2648-2017-0-2-75-84

Abstract

Ice wedges could be sources of negative magnetic anomalies due to their low magnetic susceptibility in comparison with surrounding frozen ground. This allows their mapping using highprecision magnetic survey. The work dedicated to analyze of typical models of polygonal-wedge structures in cryolithic zone. Total magnetic field anomalies are calculated at elevations of 1–5 m above the ice wedges upper boundary level. Ice wedge width varies from 1 to 3 m while polygon sizes vary from 6 to 15 m, respectively. Magnetic susceptibility of frozen ground assumed equal to 10–3 SI. Calculated anomalies magnitude amounts from several nT to several tens of nT. Provided estimations allows defining a necessary survey precision for ice wedge mapping. Ice wedges more than 3 m wide are observable in anomalous magnetic field even in the case of covering deposits thickness of up to 4 m on the condition that covering layers are laterally relatively uniform and magnetic susceptibility of frozen ground is about 10–3 SI.

About the Author

L. V. Tsibizov
Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН; Новосибирский государственный университет
Russian Federation


References

1. Бабанин В.Ф. Трухин В.И. и др. Магнетизм почв. Ярославль: Типография ЯГТУ, 1995. 222 с.

2. Васильчук Ю.К. Повторно-жильные льды // Криосфера нефтегазокоденсатных месторождений полуострова Ямал. Криосфера Бованенковского нефтегазоконденсатного месторождения. Т. 2. М.: ООО «Газпром экспо», 2013. С. 318–325.

3. Васильчук Г. И. Повторно-жильные льды Западной Сибири // Изв. АН СССР. Сер. геогр.1966. № 5. С. 104–112.

4. Коснырева М.В. Разработка комплекса геофизических методов для решения прикладных задач почвенного картирования: Автореф. дис. ... канд. геол.-минерал. наук. М., 2007. 135 c.

5. Зыков Ю.Д. Геофизические методы исследования криолитозоны: Учебник. М.: Изд-во МГУ, 2007. 272 с.

6. Паршин А.В. и др. Низковысотная беспилотная аэромагниторазведка в решении задач крупномасштабного структурно-геологического картирования и поисков рудных месторождений в сложных ландшафтных условиях // География и природные ресурсы. 2016. № 6. С. 144–149.

7. Рекомендации по комплексированию геофизических методов при мерзлотной съемке / ПНИИИС М.: Стройиздат, 1987. 88 с.

8. Станиловская Ю.В., Мерзляков В.П. Вероятностная оценка опасности полигонально-жильных льдов для трубопроводов // Наука и технологии трубопроводного транспорта нефти и нефтепродуктов. 2013. № 3. С. 48–54.

9. Allred B.J., Daniels J.J., Reza Ehsani M. (ed.). Handbook of agricultural geophysics. CRC Press, 2008. 432 p.

10. Andersland O.B., Ladanyi B. An introduction to frozen ground engineering. Springer Science & Business Media, 2013. 352 p.

11. Becker H., Fassbinder J.W.E. Magnetic Prospecting in Archaeological Sites. Monuments and Sites VI. ICOMOS. 2001. 104 p.

12. Butler S.L., Sinha G. Forward modeling of applied geophysics methods using Comsol and comparison with analytical and laboratory analog models // Computational Geosciences. 2012. № 42. P. 168–176.

13. Cunningham M. et al. An experimental aeromagnetic survey with a rotary-wing unmanned aircraft system // SEG Technical Program Expanded Abstracts. 2016. P. 2129–2133.

14. Hauck C., Kneisel C. (Eds.). Applied geophysics in periglacial environments. Cambridge University Press, 2008. Vol. 240. 238 p.

15. Hodgetts L., Dawson P., Eastaugh E. Archaeological magnetometry in an Arctic setting: a case study from Maguse Lake, Nunavut // Journal of Archaeological Sciences. 2011. № 38. P. 1754–1762.

16. Kneisel C., Hauck C., Fortier R., Moorman B. Advances in geophysical methods of permafrost investigations // Permafrost and Periglacial Processes. 2008. № 19. P. 157–178.

17. Kvamme K.L. Magnetometry: Nature’s gift to archaeology // Johnson, J.K. (ed.). Remote Sensing in Archaeology: An Explicitly North American Perspective. University of Alabama Press, Tuscaloosa, 2008. P. 205–234.

18. Landry D.B., Ferguson I.J., Milne I.J., Park R.W. Combined Geophysical Approach in a Complex Arctic Archaeological Environment: A Case Study from the LdFa-1 Site, Southern Baffi n Island, Nunavut // Archaeological Prospection. 2015. № 22. P. 157–170.

19. Lauterbach R. Mikromagnetik-ein Hilfsmittel geologischer Erkundung // Wiss. Zeitschr. Univ. Leipzig. 1953. T. 3. S. 54.

20. Lonsdale K. Diamagnetic susceptibility and anisotropy of ice // Nature. 1949. № 164. P. 101.

21. Scott W., Sellmann P., Hunter J. Geophysics in the study of permafrost // Ward, S. (Ed.) Geotechnical and Environmental Geophysics. Society of Exploration Geophysics Tulsa. 1990. P. 355–384.

22. Martin P., Jenkin J., Adams F., Jorgenson M., Matz A., Payer D., Reynolds P., Tidwell A., Zelenak J. Wildlife Response to Environmental Arctic Change: Predicting Future Habitats of Arctic Alaska // Report of the Wildlife Response to Environmental Arctic Change (WildREACH): Predicting Future Habitats of Arctic Alaska Workshop, 17–18 November 2008. Fairbanks, Alaska: U.S. Fish and Wildlife Service, 2009. 138 p.

23. Washburn A.L. Geocryology – A Survey of Periglacial Processes and Environments. London, UK: Edward Arnold Ltd., 1979. P. 406.

24. Wolff C.B., Urban T.M. Geophysical analysis at the Old Whaling site, Cape Krusenstern, Alaska, reveals the possible impact of permafrost loss on archaeological interpretation // Polar Research. 2013. № 32. P. 1–12.


Review

For citations:


Tsibizov L.V. Ice wedges in anomalous magnetic field: numerical modeling. Arctic and Antarctic Research. 2017;(2):75-84. (In Russ.) https://doi.org/10.30758/0555-2648-2017-0-2-75-84

Views: 629


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)