Preview

Arctic and Antarctic Research

Advanced search

Climate change in the western part of the Russian Arctic in 1980–2021. Part 2. Soil temperature, snow, humidity

https://doi.org/10.30758/0555-2648-2022-68-4-352-369

Abstract

Based on average monthly data from the re-analysis of NASA MERRA-2 satellite measurements, the paper explores climatic changes in the temperature of the upper 1.5 meters of soil (TS), the thickness and area of the snow cover (SC), the moisture content of the top layer of soil 1 meter thick (SM) and air humidity at a height of 2 meters from the surface (AH) in the western part of the Russian Arctic (60°–75° N, 30°–85° E) for 1980–2021. The time interval considered is divided into two periods: 1980–2000 and 2001–2021. The differences between the average values of the parameters studied for these periods are calculated. The climatic changes that have occurred for the winter and summer seasons, as well as for each month of the year, are considered separately. Calculation of linear and quadratic trends has revealed an accelerating growth in the TS of the region studied in the period 2001–2021. A decrease in the thickness of the SC and a significant reduction in the area of the SC in November and April are shown. An increase in SM was found in the southwest and east of the region studied in the period 2001–2021, and a significant increase in AH in the western part of the Russian Arctic over the time interval studied is shown. Moreover, the growth of AH over the waters of the Barents, Kara and White Seas significantly accelerated in 2001–2021 compared to 1980–2000.

About the Authors

I. V. Serykh
Shirshov Institute of Oceanology, Russian Academy of Sciences, Geophysical Center of the Russian Academy of Sciences
Russian Federation


A. V. Tolstikov
Northern Water Problems Institute of Karelian Research Centre of RAS
Russian Federation


References

1. Serykh I.V., Tolstikov A.V. Climate change in the western part of the Russian Arctic in 1980–2021. Part 1. Air temperature, precipitation, wind. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2022, 68 (3): 258–277. doi: 10.30758/0555-2648-2022-68-3-258-277. [In Russian].

2. Sherstjukov A.B. Permafrost of Russia in the context of global warming. Jevoljucija i dinamika jekosistem. Evolution and dynamics of ecosystems. 2007, 4: 8–11. [In Russian].

3. Anisimov O.A., Anohin Ju.A., Lavrov S.A., Malkova G.V., Mjach L.T., Pavlov A.V., Romanovskij V.A., Streleckij D.A., Holodov A.L., Shiklomanov N.I. Continental permafrost. Chapter 8. Metody izucheniia posledstvii izmenenii klimata dlia prirodnykh system. Methods for studying the consequences of climate change for natural systems (edited by S.M. Semenov). M.: VNIIGMI, 2010: 301–359. [In Russian].

4. Anisimov O.A., Sherstiukov A.B. Assessment of the role of natural and climatic factors in changes in the permafrost zone of Russia. Kriosfera Zemli. Earth’s cryosphere. 2016, 22 (2): 90–99. [In Russian].

5. Konishhev V.N. Permafrost response to climate warming. Kriosfera Zemli. Earth’s cryosphere. 2011, 15 (4): 15–18. [In Russian].

6. Lemke, P., Ren J., Alley R.B., Allison I., Carrasco J., Flato G., Fujii Y., Kaser G., Mote P., Thomas R.H., Zhang T. Observations: Changes in Snow, Ice and Frozen Ground. Chapter 4. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007: 337–383.

7. Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme (AMAP). Oslo, Norway, 2017. Available at: https://www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-2017/1610 (accessed 30.11.2022).

8. Pogojeva M.P., Yakushev E.V., Petrov I.N., Yaeski E.A. Experimental study of the effect of permafrost melting on the content of biogenic elements and heavy metals in sea water during abrasion destruction of Arctic coasts. Arktika: jekologija i jekonomika. Arctic: ecology and economy. 2021, 11 (1): 67–75. doi: 10.25283/2223-4594-2021-1-67-75. [In Russian].

9. Porfir’ev B.N., Eliseev D.O., Streletskii D.A. Economic assessment of the consequences of permafrost degradation to exclude climate change for the sustainability of the road situation in the Russian Arctic. Vestnik Rossiiskoi akademii nauk. Bulletin of the Russian Academy of Sciences. 2019, 89 (12): 1228–1239. [In Russian].

10. Popova V.V., Shiriaeva A.V., Morozova P.A. Changes in Snow Cover Characteristics in Russia in 1950–2013: Regional Peculiarities and Relationship with Global Warming. Kriosfera Zemli. Earth’s cryosphere. 2018, 22 (4): 65–75. doi: 10.21782/KZ1560-7496-2018-4(65-75). [In Russian].

11. Sosnovskii A.V., Chernov R.A. Influence of snow cover on the cooling of the surface layer of the East Grönfjord Glacier (Svalbard). Led i Sneg. Ice and snow. 2021, 61 (1): 75–88. doi: 10.31857/ S2076673421010072. [In Russian].

12. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate. 2017, 30 (14): 5419–5454.

13. Tao J., Koster R.D., Reichle R.H., Forman B.A., Xue Y., Chen R.H., Moghaddam M. Permafrost Variability over the Northern Hemisphere Based on the MERRA-2 Reanalysis. Cryo. 2019, 13: 2087–2110.

14. Reichle R., Liu Q., Koster R., Draper C., Mahanama S., Partyka G. Land Surface Precipitation in MERRA-2. Journal of Climate. 2017, 30 (5): 1643–1664.

15. Toure A.M., Reichle R.H., Forman B.A., Getirana A., De Lannoy G.J.M. Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model. Remote Sensing. 2018, 10, 316. Available at: https://doi.org/10.3390/rs10020316 (accessed 30.11.2022).

16. Reichle R.H., Draper C.S., Liu Q., Girotto M., Mahanama S.P.P., Koster R.D., De Lannoy G.J.M. Assessment of MERRA-2 land surface hydrology estimates. Journal of Climate. 2017, 30: 2937–2960.

17. Draper C., Reichle R.H. Assimilation of satellite soil moisture for improved atmospheric reanalyses. Mon. Wea. Rev. 2019, 147: 2163–2188.

18. Bosilovich M.G., Robertson F.R., Takacs L., Molod A., Mocko D. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis. Journal of Climate. 2017, 30 (4): 1177–1196.

19. Seryh I.V., Kostjanoj A.G., Lebedev S.A., Kostjanaja E.A. On the transition of the temperature regime of the White Sea region to a new phase state. Fundamental’naja i prikladnaja gidrofizika. Fundamental and applied hydrophysics. 2022, 15 (1): 98–111. [In Russian].

20. Byshev V.I., Nejman V.G., Romanov Ju.A., Seryh I.V. On the phase variability of some characteristics of the modern climate in the North Atlantic region. Doklady Akademii nauk (DAN). Reports of the Academy of Sciences. 2011, 438 (6): 817–822. [In Russian].

21. Serykh I.V. Influence of the North Atlantic dipole on climate changes over Eurasia. IOP Conf. Ser.: Earth Environ. Sci. 2016, 48: 012004.

22. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. On the spatial nonuniformity of some parameters of global variations in the recent climate. Doklady Earth Sciences. 2009, 426 (4): 705–709. [In Russian].

23. Byshev V.I., Neiman V.G., Anisimov M.V., Gusev A.V., Serykh I.V., Sidorova A.N., Figurkin A.L., Anisimov I.M. Multi-decadal oscillations of the ocean active upper-layer heat content. Pure and Applied Geophysics. 2017, 174 (7): 2863–2878.

24. Serykh I.V., Kostianoy A.G. Seasonal and interannual variability of the Barents Sea temperature. Ecologica Montenegrina. 2019, 25: 1–13.

25. Seryh I.V., Tolstikov A.V. On the causes of long-term variability of near-surface air temperature over the White Sea. Vestnik Moskovskogo universiteta. Ser. 5: Geografija. Bulletin of Moscow University. Ser. 5: Geography. 2020, 4: 83–95. [In Russian].

26. Serykh I.V., Tolstikov A.V. On the climatic changes of the surface air temperature in the White Sea region. IOP Conference Series: Earth and Environmental Science. 2020, 606: 012054.

27. Seryh I.V. On the role of El Niño — Global Atmospheric Oscillation in the interannual variability of hydrometeorological processes. Gidrometeorologija i jekologija. Hydrometeorology and ecology. 2021, 63: 329–370. [In Russian].

28. Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat. Journal of Climate. 2012, 25 (13): 4736–4743.

29. Polyakov I.V., Pnyushkov A.V., Alkire M.B., Ashik I.M., Baumann T.M., Carmack E.C., Goszczko I., Guthrie J., Ivanov V.V., Kanzow T., Krishfield R., Kwok R., Sundfjord A., Morison J., Rember R., Yulin A. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science. 2017, 356, 6335: 285–291.


Review

For citations:


Serykh I.V., Tolstikov A.V. Climate change in the western part of the Russian Arctic in 1980–2021. Part 2. Soil temperature, snow, humidity. Arctic and Antarctic Research. 2022;68(4):352-369. (In Russ.) https://doi.org/10.30758/0555-2648-2022-68-4-352-369

Views: 379


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)