Possibilities of investigating ice development of the Kara sea based on CryoSat-2 and SMOS data
https://doi.org/10.30758/0555-2648-2023-69-1-10-28
Abstract
Sea ice age is a proxy for thickness, which can be obtained through the use of satellite data. The paper presents the results of comparison of CryoSat-2, SMOS and CryoSat-2 & SMOS fusion data with detailed ice charts (October–April, 2010–2018). The AARI ice charts were chosen as references for comparison because they integrate knowledge and data from various sources, including expert analysis of operational satellite information, in-situ measurements at coastal stations, data on ice conditions from ships of the Northern Sea Route (NSR). The division of satellite data elements into classes (stages of development) was performed according to the maximum likelihood classifier. The recognition result for each stage of development was evaluated by means of three criteria, in accordance with the class value of Mode, Median and Mean. The effectiveness of satellite data in determining the Kara Sea ice thickness varies depending on the sea ice stage of development and winter season time. Four stages of development (old ice, thick first-year ice, medium first-year ice, nilas) showed the best recognition results. Although the CryoSat-2 mission was designed primarily to detect climate-dependent variations of the thickness of floating ice, in terms of statistical recognition of the Kara Sea ice stages of development, CryoSat-2 data can also be used to retrieve the thickness of thick first-year ice (January–April) and the thickness of medium first-year ice (January–February). For the remaining stages within the study area, the altimetry method shows a significant uncertainty, which can be resolved for nilas, thin first-year ice and medium first-year ice (March) by using SMOS data and CryoSat-2 & SMOS fusion data. In general, altimetric data, radiometric data and combination thereof can be applied in the complex analysis of all available information to ensure hydrometeorological and navigation support. Also, it is proposed to use the data of the ICESat-2 laser altimeter and to make a general comparison with in-situ measurements.
About the Authors
V. V. KirillovRussian Federation
Barnaul
O. V. Lovtskaya
Russian Federation
Barnaul
O. S. Devyataev
Russian Federation
St. Petersburg
E. V. Afanasyeva
Russian Federation
St. Petersburg
Moscow
A. I. Sinitsky
Russian Federation
Salekhard
L. A. Khvorova
Russian Federation
Barnaul
D. S. Fokin
Russian Federation
Barnaul
A. N. Semchukov
Russian Federation
Barnaul
M. I. Koveshnikov
Russian Federation
Barnaul
N. M. Kovalevskaya
Russian Federation
Barnaul
References
1. Gudkovich Z.M., Кarklin V.P., Кovalev Ye.G, Smolyanitsky V.М., Frolov I.E. Changes of sea ice cover and other climatic system components in the Arctic and the Antarctic related to evolution of polar eddies. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2008, 1 (78): 48–58. [In Russian].
2. Walsh J.E., Fetterer F., Stewart J.S., Chapman W.L. A database for depicting Arctic sea ice variations back to 1850. Geographical Review. 2017, 107 (1): 89–107. doi: 10.1111/j.1931-0846.2016.12195.x.
3. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 2391 p. doi: 10.1017/9781009157896.
4. Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environmental Research Letters. 2018, 13: 105005. doi: 10.1088/1748-9326/aae3ec.
5. Lindsay R., Schweiger A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere. 2015, 9 (1): 269–283. doi: 10.5194/tc-9-269-2015.
6. Frolov I.E., Gudkovich Z.M., Karklin V.P., Smolianitskii V.P., Kliachkin S.V., Frolov S.V. Sea ice. Methods for assessing the effects of climate change on physical and biological systems. Moscow: Rosgidromet, 2012: 400–429. [In Russian].
7. Afanasieva E.V., Alekseeva T.A., Sokolova J.V., Demchev D.M., Chufarova M.S., Bychenkov Yu.D., Devyataev O. S. Methodology for compiling ice maps of the AARI. Rossijskaja Arktika. Russian Arctic. 2019, 7: 5–20. doi: 10.24411/2658-4255-2019-10071.
8. Moon T.A., Druckenmiller M.L., Thoman R.L. Eds. Arctic Report Card 2021. National Oceanic and Atmospheric Assotiation 2021. Available at: https://repository.library.noaa.gov/view/noaa/34308 (accessed 16.08.2022).
9. Tschudi M.A., Stroeve J.C., Stewart J.S. Relating the age of Arctic Sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing. 2016, 8 (6): 457. doi: 10.3390/rs8060457.
10. Zygmuntovska M. Arctic sea ice altimetry — Advances and current uncertainties. PhD thesis. Bergen: University of Bergen, 2014: 90 p.
11. Thoman R. L.; J. Richter-Menge and M.L. Druckenmiller, Eds. Arctic Report Card 2020. National Oceanic and Atmospheric Assotiation 2020. Available at: https://repository.library.noaa.gov/view/noaa/27827 (accessed 16.08.2022).
12. Ricker R., Hendricks S., Helm V., Skourup H., Davidson M. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. The Cryosphere. 2014, 8: 1607–1622. doi: 10.5194/tc-8-1607-2014.
13. Tian-Kunze X., Kaleschke L., Maaß N., Mäkynen M., Serra N., Drusch M., Krumpen T. SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification. The Cryosphere. 2014, 8 (3): 997–1018. doi: 10.5194/tc-8-997-2014.
14. Ricker R., Hendricks S., Kaleschke L., Tian-Kunze X., King J., Haas C. A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere. 2017, 11: 1607–1623. doi: 10.5194/tc-11-1607-2017.
15. Sesilie Kh. fon-Kvil’fel’t. Kratkii otchet Norvezhskogo poliarnogo instituta. Summary report of the Norwegian Polar Institute. 2018, 47: 286 p. Available at: https://www.barentsportal.com/documents/MIZ_RU.pdf (accessed 16.08.2022). [In Russian].
16. Ronkainen I., Lehtiranta J., Lensu M., Rinne E., Haapala J., Haas C. Interannual sea ice thickness variability in the Bay of Bothnia. The Cryosphere. 2018, 12: 3459–3476. doi: 10.5194/tc-12-3459-2018.
17. Smolyanitsky V.M., Turyakov A.B., Filchuk K.V., Frolov I.E. Comparison of direct measurements of sea ice thickness and snow height, CryoSat-2 observations and PIOMAS numerical estimates. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2020, 66 (3): 337–348. https://doi.org/10.30758/0555-2648-2020-66-3-337-348. [In Russian].
18. Belter H.J., Krumpen T., Hendricks S., Hoelemann J., Janout M.A., Ricker R., Haas C. Satellite-based sea ice thickness changes in the Laptev Sea from 2002 to 2017: comparison to mooring observations. The Cryosphere. 2020, 14: 2189–2203. doi: 10.5194/tc-14-2189-2020,2020.
19. Sea ice nomenclature. Terminology and codes. WMO. № 259. V. 1. Geneva, 2017. doi: 10.25607/OBP-1515
20. Karklin V.P., Hotchenkov S.V., Yulin A.V., Smolyanitsky V.M. Seasonal changes in the stages of sea ice development in northeast part of the Kara sea during the autumn and winter period. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2016, 110 (4): 41–50. [In Russian].
21. Karklin V.P., Hotchenkov S.V., Yulin A.V., Smolyanitsky V.M. Formation of the stages of sea ice development composition in the south-western part of the Kara sea during autumn-winter season. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2017, 113 (3): 16–26. doi: 10.30758/0555-2648-2017-0-3-16-26. [In Russian].
22. Richter-Menge J., Druckenmiller M.L., Jeffries M. Eds. 2019: Arctic Report Card 2019. Available at: https://arctic.noaa.gov/Report-Card/Report-Card-2019/ArtMID/7916/ArticleID/837/About-Arctic-Report-Card-2019 (accessed 16.08.2022).
23. Atlas ledjanyh obrazovanij. Ed. V. Smolyanitsky. Atlas of ice formations. Ed. V. Smolyanitsky. St. Petersburg: Arctic and Antarctic Research Institute, 2019: 232 p. [In Russian].
24. Gray L., Burgess D., Copland L., Langley K., Gogineni P., Paden J., Leuschen C., van As D., Fausto R., Joughin I., Smith B. Measuring height change around the periphery of the Greenland Ice Sheet with radar altimetry. Frontiers in Earth Science. 2019, 7: 1–14. doi: 10.3389/feart.2019.00146.
25. Schröder D., Feltham D.L., Tsamados M., Ridout. A., Tilling R. New insight from CryoSat-2 sea ice thickness for sea ice modelling. The Cryosphere. 2019, 13: 125–139. doi: 10.5194/tc-13-125-2019.
26. Ricker R., Kauker F., Schweiger A., Hendricks S., Zhang J., Paul S. Evidence for an increasing role of Ocean heat in Arctic winter sea ice growth. Journal of Climate. 2021, 34 (13): 5215–5227. doi: 10.1175/JCLI-D-20-0848.1.
27. Wang X., Key J., Kwok R., Zhang J. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sensing. 2016, 8 (9):713. doi: 10.3390/rs8090713.
28. Hendricks S., Ricker R., Paul S. Product User Guide & Algorithm Specification: AWI CryoSat-2 Sea Ice Thickness (version 2.4). 2021. URL: https://epic.awi.de/id/eprint/54733/ (дата обращения: 16.08.2022).
29. Duda R., Hart P. Pattern Classification and Scene Analysis. NY.: John Willey & Sons, 1973: 284 p.
30. Poliakova V.V., Shabrova N.V. Osnovy teorii statistiki. Fundamentals of Statistical Theory. Ekaterinburg: Izdatel’stvo Ural’skogo universiteta, 2015: 148 p. [In Russian].
31. Rebrova O.Iu. Statisticheskij analiz medicinskih dannyh. Primenenie paketa prikladnyh programm STATISTICA. Statistical analysis of medical data. Application of the STATISTICA application package. Moscow: MediaSfera, 2002: 312 p. [In Russian].
32. Ivanov R.V., Polubelov D.A., Soboleva A.A. Ice condition features of hydrographic vessels for work in the Kara Sea. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova. Bulletin of the State University of the Sea and River Fleet named after Admiral S. O. Makarov. 2018, 10 (6): 1211–1224. doi: 10.21821/2309-5180-2018-10-6-1211-1224. [In Russian].
Review
For citations:
Kirillov V.V., Lovtskaya O.V., Devyataev O.S., Afanasyeva E.V., Sinitsky A.I., Khvorova L.A., Fokin D.S., Semchukov A.N., Koveshnikov M.I., Kovalevskaya N.M. Possibilities of investigating ice development of the Kara sea based on CryoSat-2 and SMOS data. Arctic and Antarctic Research. 2023;69(1):10-28. (In Russ.) https://doi.org/10.30758/0555-2648-2023-69-1-10-28