Preview

Arctic and Antarctic Research

Advanced search

Some patterns of formation of extreme surface air temperature in the area of the Spitzbergen (Svalbard) archipelago during the cold period

https://doi.org/10.30758/0555-2648-2023-69-2-141-156

Abstract

The article presents research findings of meteorological conditions during the formation of extreme surface air temperature (SAT) in the cold period from October to May in the Barentsburg area, the Spitzbergen (Svalbard) archipelago. Six extremely cold periods and six extremely warm periods for the weather sequence from 1912 to 2022 are considered. Correlation coefficients of extreme SAT in Barentsburg with extreme SAT in the points of Longyearbyen, Hornsund, Isfjord Radio, Pyramiden, Nu-Alesund, located in the west of Spitzbergen (Svalbard), were calculated. Also, characteristics of atmospheric circulation at the surface level, the level of the geopotential surface 500 hPa and 700 hPa and air temperature anomalies are analyzed, the results of comparing atmospheric circulation indices NAO and AO in the formation of extreme SAT are presented. Characteristic localizations of the polar vortex were found during the formation of negative and positive anomalies of SAT. For cold periods with extremely low temperatures, the localization of the polar vortex in the northeast of the Kara Sea and Severnaya Zemlya archipelago is observed. At the surface level the baric trough from the Atlantic depression is shifted to the coast of Scandinavia and the southern part of the Barents Sea. The Svalbard region is under the influence of the periphery of the anticyclonic field over the Arctic basin, Greenland, over the western Arctic Seas, conditions are formed for the deviation of SAT by 3–4 degrees below normal. In the case of extremely high SAT, the polar vortex is shifted to the eastern part of the Canadian Arctic Archipelago and the Baffin Sea. At the surface level, the baric trough from the Icelandic depression develops over the Greenland, Norwegian and Barents Seas, which leads to the moving of warm air masses from the Atlantic to polar latitudes and the formation of average SAT in the Spitzbergen (Svalbard) region above long-term values by 1–2 degrees. The estimates of macroprocesses obtained can be used for preparing long-term forecasts for the northern polar region and detailing them for the Spitzbergen (Svalbard) region.

About the Authors

I. A. Ilyushchenkova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



A. Ya. Korzhikov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



B. V. Ivanov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Saint Petersburg State University
Russian Federation

St. Petersburg



References

1. Matishov G.G., Berdnikov S.V., Zhichkin A.P., Makarevich P.R., Dzheniuk S.L., Kulygin V.V., Iaitskaia N.A., Povazhnyi V.V., Sheverdiaev I.V., Kumpan S.V., Tret’iakova I.A., Tsygankova A.E. Atlas klimaticheskikh izmenenii v bol’shikh morskikh ekosistemakh Severnogo polushariia (1878–2013). Region 1. Moria Vostochnoi Arktiki. Region 2. Chernoe, Azovskoe i Kaspiiskoe more. Atlas of Climatic Changes in Large Marine Ecosystems of the Northern Hemisphere (1873–2013). Region 1. The Eastern Arctic Seas. Region 2. The Black Sea, the Sea of Azov, and the Caspian Sea. Rostov-on-Don: SSC RAS Publishers, 2014: 256 p. [In Russian].

2. Vangengeim G.Ia. Osnovy makrotsirkuliatsionnogo metoda dolgosrochnykh meteorologicheskikh prognozov dlia Arktiki. Fundamentals of the macrocirculatory method of long-term meteorological forecasts for the Arctic. Trudy AANII. 1952, 34: 314 p. [In Russian].

3. Girs A.A. Makrotsirkuliatsionnyi metod dolgosrochnykh meteorologicheskikh prognozov. Macrocirculatory method of long-term meteorological forecasts. Leningrad: Gidrometeoizdat, 1974: 488 p. [In Russian].

4. Pogosian Kh. P. Obshchaia tsirkuliatsiia atmosfery. General circulation of the atmosphere. Leningrad: Gidrometeoizdat, 1972: 395 p. [In Russian].

5. Turner J., Marshall G.J. Climate change in the polar regions. Cambridge: Cambridge University Press, 2011: 434 p. doi: 10.1657/1938-4246-44.1.151b.

6. Lemke P., Jacobi H.W. Arctic climate change. The ACSYS decade and beyond. Dordrecht; New York: Springer, 2012: 464 p. doi: 10.1007/978-94-007-2027-5.

7. Przybylak R. The climate of the Arctic. Second edition. Cham: Springer, 2015: 287 p. doi: 10.1007/978-3-319-21696-6.

8. Przybylak R., Araźny A., Ulandowska-Monarcha P. The influence of atmospheric circulation on the spatial diversity of air temperature in the area of Forlandsundet (NW Spitsbergen) during 2010–2013. International Journal of Climatology. 2018, 38 (1): 230–251. doi: 10.1002/joc.5172.

9. Svyashchennikov P.N., Prokhorova U.V., Ivanov B.V. Comparison of atmospheric circulation in the area of Spitsbergen in 1920–1950 and in the modern warning period. Meteorologiia i gidrologiia. Meteorology and Hydrology. 2020, 45 (1): 36–44. [In Russian].

10. Il’iushchenkova I.A., Korzhikov A.Ia., Aleksandrov A.Ia. Features fields of surface pressure and air temperature anomalies in the Arctic in the period of global warming. Ucheniye zapiski RGGMU. Scientific notes of RSHU. 2015, 40: 142–149. [In Russian].

11. Prokhorova U.V., Sviashchennikov P.N., Ivanov B.V. Investigation of the temporary variability of the characteristics of atmospheric circulation in the area of Spitsbergen. Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2017, 4 (114): 47–56. doi: 10.30758/0555-2648-2017-0-4-47-56. [In Russian].

12. Cullather R.I., Lim Y.-K., Boisvert L.N., Brucker L., Lee J.N., Nowicki S.M.J. Analysis of the warmest Arctic winter, 2015–2016. Geophysical Research Letters. 2016, 43 (20): 10,808–10,816. doi: 10.1002/2016GL071228.

13. Overland J.E., Wang M. Recent extreme Arctic temperatures are due to a split polar vortex. Journal of Climate. 2016, 29 (15): 5609–5616. doi: 10.1175/jclid-16-0320.1.

14. Papritz L. Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features. Journal of Climate. 2020, 33(3): 993–1016. doi: 10.1175/JCLI-D-19-0638.1.

15. Demin V.I., Ivanov B.V., Revina A.D. Reconstruction of air temperature series at Russian station in Barentsburg (Svalbard). Rossiiskaia Arktika. Russian Arctic. 2020, 2 (8): 30–40. doi: 10.24411/2658-4255-2020-12093. [In Russian].

16. Karandasheva T.K., Demin V.I., Ivanov B.V., Revina A.D. Air temperature changes in Barentsburg (Svalbard) in XX–XXI centures. Justification for introducing a new climate standart. Rossiiskaia Arktika. Russian Arctic. 2021, 2 (13): 26–39. doi: 10.24412/2658-4255-2021-2-26-39. [In Russian].

17. Degtiarev A.S., Drabenko V.A. Statisticheskie metody obrabotki meteorologicheskoi informatsii. Statistical methods of processing meteorological information. St. Petersburg: OOO «Andreevskii izdatel’skii dom», 2015: 225 p. [In Russian].

18. North Atlantic Oscillation, Arctic Oscillation. National Centers for Environmental Prediction — Climate Prediction Center (NOAA). Available at: https://psl.noaa.gov/data/climateindices/ (accessed 10.05.2023).

19. Nesterov E.S. Severoatlanticheskoe kolebanie: atmosfera i okean. North Atlantic oscillation: atmosphere and ocean. Moscow: Triada, 2013: 127 p. [In Russian].

20. Thompson D.W., Wallace J.M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters. 1998, 25 (9): 1297–1300. doi: 10.1029/98gl00950.

21. Johannessen O.M., Kuzmina S.I., Bobylev L.P., Miles M.W. Surface air temperature variability and trends in the Arctic: new amplification assessment and regionalisation. Tellus A: Dynamic Meteorology and Oceanography. 2016, 68 (1): 28234. doi: 10.3402/tellusa.v68.28234.


Review

For citations:


Ilyushchenkova I.A., Korzhikov A.Ya., Ivanov B.V. Some patterns of formation of extreme surface air temperature in the area of the Spitzbergen (Svalbard) archipelago during the cold period. Arctic and Antarctic Research. 2023;69(2):141-156. (In Russ.) https://doi.org/10.30758/0555-2648-2023-69-2-141-156

Views: 326


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)