Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere

https://doi.org/10.30758/0555-2648-2023-69-4-452-463

Аннотация

The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020.

Об авторах

V. V. Zuev
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Россия

Tomsk

 


E. S. Savelieva
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences; A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Россия

Tomsk

Moscow

 


V. N. Krupchatnikov
A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences; Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences; Siberian Regional Hydrometeorological Research Institute; ovosibirsk State University
Россия

Moscow

Novosibirsk



I. V. Borovko
Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences; Siberian State Transport University
Россия

Novosibirsk

 


A. V. Pavlinsky
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences
Россия

Tomsk



O. G. Chkhetiani
A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Россия

Moscow



E. A. Maslennikova
Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences; A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences
Россия

Tomsk

Moscow



Список литературы

1. Fogt R.L., Marshall G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change. 2020; 11(4): e652. https://doi.org/10.1002/wcc.652

2. Gillett N.P., Kell T.D., Jones P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006; 33(23): L23704. https://doi.org/10.1029/2006GL027721

3. Limpasuvan V., Hartmann D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999; 26(20): 3133–3136. https://doi.org/10.1029/1999GL010478

4. Waugh D.W., Polvani L.M. Stratospheric polar vortices. Polvani L.M., Sobel A.H., Waugh D.W. (Eds.) The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010; 190: 43–57. https://doi.org/10.1002/9781118666630.ch3

5. Lim E.-P., Hendon H.H., Boschat G., Hudson D., Thompson D.W.J., Dowdy A.J., Arblaster J.M. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 2019; 12: 896–901. https://doi.org/10.1038/s41561-019-0456-x

6. Kidston J., Scaife A.A., Hardiman S.C., Mitchell D.M., Butchart N., Baldwin M.P., Gray L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015; 8(6): 433–440. https://doi.org/10.1038/ngeo2424

7. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017; 98(1): 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1

8. Hurwitz M.M., Newman P.A., Li F., Oman L.D., Morgenstern O., Braesicke P., Pyle J.A. Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. J. Geophys. Res. 2010; 115(D7): D07105. https://doi.org/10.1029/2009JD012788

9. Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999; 37(3): 275–316. https://doi.org/10.1029/1999RG900008

10. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole. Geophys. Res. Lett. 2004; 31(21): L21104. https://doi.org/10.1029/2004GL020596

11. Vargin P.N., Nikiforova M.P., Zvyagintsev A.M. Variability of the Antarctic ozone anomaly in 2011–2018. Russ. Meteorol. Hydrol. 2020; 45(2): 63–73. https://doi.org/10.3103/S1068373920020016

12. Smyshlyaev S.P., Blakitnaya P.A., Motsakov M.A. Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone. Russ. Meteorol. Hydrol. 2020; 45(3): 153–160. https://doi.org/10.3103/S1068373920030024

13. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007; 20(3): 449–469. https://doi.org/10.1175/JCLI3996.1

14. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007; 20(3): 470–488. https://doi.org/10.1175/JCLI3994.1

15. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. 2015; 96(11): 1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1

16. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 2005; 62(3): 590–602. https://doi.org/10.1175/JAS-3318.1

17. Safieddine S., Bouillon M., Paracho A.-C., Jumelet J., Tencé F., Pazmino A., Goutail F., Wespes C., Bekki S., Boynard A., Hadji-Lazaro J., Coheur P.-F., Hurtmans D., Clerbaux C. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. 2020; 47(14): e2020GL087810. https://doi.org/10.1029/2020GL087810

18. Lim E.-P., Hendon H.H., Butler A.H., Thompson D.W.J., Lawrence Z.D., Scaife A.A., Shepherd T.G., Polichtchouk I., Nakamura H., Kobayashi C., Comer R., Coy L., Dowdy A., Garreaud R.D., Newman P.A., Wang G. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. B. Am. Meteorol. Soc. 2021; 102(6): E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1

19. Roy R., Kuttippurath J., Lefèvre F., Raj S., Kumar P. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002. Theor. Appl. Climatol. 2022; 149: 119–130. https://doi.org/10.1007/s00704-022-04031-6

20. Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J. The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations. J. Geophys. Res. 2020; 125(18): e2020JD033335. https://doi.org/10.1029/2020JD033335

21. Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented Antarctic ozone holes of 2020 and 2021. Geophys. Res. Lett. 2022; 49(10): e2022GL098064. https://doi.org/10.1029/2022GL098064

22. Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G. The Antarctic ozone hole during 2020. J. South. Hemisph. Earth Syst. Sci. 2021; 72(1): 19–37. https://doi.org/10.1071/ES21015

23. Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic. Dokl. Earth Sci. 2023; 509(1): 358–362. https://doi.org/10.1134/S1028334X22601754

24. Stenchikov G., Hamilton K., Stouffer R.J., Robock A., Ramaswamy V., Santer B., Graf H.-F. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 2006; 111: D07107. https://doi.org/10.1029/2005JD006286

25. Driscoll S., Bozzo A., Gray L.J., Robock A., Stenchikov G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 2012; 117: D17105. https://doi.org/10.1029/2012JD017607

26. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex. Dynam. Atmos. Oceans. 2019; 87: 101097. https://doi.org/10.1016/j.dynatmoce.2019.101097

27. Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods. J. Atmos. Sol.-Terr. Phys. 2019; 190: 1–5. https://doi.org/10.1016/j.jastp.2019.04.016

28. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020; 146(729): 1–51. https://doi.org/10.1002/qj.3803

29. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017; 30(14): 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

30. Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023; 132(1): 39. https://doi.org10.1007/s12040-023-02060-x

31. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022; 179(6–7): 2609–2616. https://doi.org/10.1007/s00024022-03054-4

32. Yulaeva E., Holton J.R., Wallace J.M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 1994; 51(2): 169–174. https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2

33. Steinbrecht W., Hassler B., Claude H., Winkler P., Stolarski R.S. Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys. 2003; 3(5): 1421–1438. https://doi.org/10.5194/acp-3-1421-2003

34. Noguchi S., Kuroda Y., Kodera K., Watanabe S. Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. 2020; 47(15): e2020GL088743. https://doi.org/10.1029/2020GL088743


Рецензия

Для цитирования:


Zuev V.V., Savelieva E.S., Krupchatnikov V.N., Borovko I.V., Pavlinsky A.V., Chkhetiani O.G., Maslennikova E.A. Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere. Проблемы Арктики и Антарктики. 2023;69(4):452-463. https://doi.org/10.30758/0555-2648-2023-69-4-452-463

For citation:


Zuev V.V., Savelieva E.S., Krupchatnikov V.N., Borovko I.V., Pavlinsky A.V., Chkhetiani O.G., Maslennikova E.A. Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere. Arctic and Antarctic Research. 2023;69(4):452-463. (In Russ.) https://doi.org/10.30758/0555-2648-2023-69-4-452-463

Просмотров: 293


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)