Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere
https://doi.org/10.30758/0555-2648-2023-69-4-452-463
Аннотация
The trend of strengthening of the Antarctic polar vortex in late spring and early summer (November–December) has been observed in recent decades. A good example of this trend is the dynamics of the Antarctic polar vortex in 2020 when it existed until the last week of December. In 2019, conversely, on the contrary, an unusually early breakup of the polar vortex occurred, a minor sudden stratospheric warming was recorded. Strengthening (or weakening) of the Antarctic polar vortex occurs as a result of an increase (or decrease) in the stratospheric meridional temperature gradient under conditions of growth (or decline) in the temperature of the lower subtropical stratosphere. We considered the temperature variations in the lower subtropical stratosphere in the spring of 2019 and 2020 and the corresponding response of the Antarctic polar vortex. The dynamics of the Antarctic polar vortex in September–October 2019 and November 2020 was largely synchronized with the temperature changes in the lower subtropical stratosphere relative to climatological means. Using correlation analysis, we show that the Antarctic polar vortex dynamics in December is largely due to the temperature changes in the lower subtropical stratosphere that occurred in the second half of November, which manifested itself in 2020.
Ключевые слова
Об авторах
V. V. ZuevРоссия
Tomsk
E. S. Savelieva
Россия
Tomsk
Moscow
V. N. Krupchatnikov
Россия
Moscow
Novosibirsk
I. V. Borovko
Россия
Novosibirsk
A. V. Pavlinsky
Россия
Tomsk
O. G. Chkhetiani
Россия
Moscow
E. A. Maslennikova
Россия
Tomsk
Moscow
Список литературы
1. Fogt R.L., Marshall G.J. The Southern Annular Mode: Variability, trends, and climate impacts across the Southern Hemisphere. WIREs Clim. Change. 2020; 11(4): e652. https://doi.org/10.1002/wcc.652
2. Gillett N.P., Kell T.D., Jones P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006; 33(23): L23704. https://doi.org/10.1029/2006GL027721
3. Limpasuvan V., Hartmann D.L. Eddies and the annular modes of climate variability. Geophys. Res. Lett. 1999; 26(20): 3133–3136. https://doi.org/10.1029/1999GL010478
4. Waugh D.W., Polvani L.M. Stratospheric polar vortices. Polvani L.M., Sobel A.H., Waugh D.W. (Eds.) The Stratosphere: Dynamics, Transport, and Chemistry. Geophysical Monograph Series. 2010; 190: 43–57. https://doi.org/10.1002/9781118666630.ch3
5. Lim E.-P., Hendon H.H., Boschat G., Hudson D., Thompson D.W.J., Dowdy A.J., Arblaster J.M. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 2019; 12: 896–901. https://doi.org/10.1038/s41561-019-0456-x
6. Kidston J., Scaife A.A., Hardiman S.C., Mitchell D.M., Butchart N., Baldwin M.P., Gray L.J. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci. 2015; 8(6): 433–440. https://doi.org/10.1038/ngeo2424
7. Waugh D.W., Sobel A.H., Polvani L.M. What is the polar vortex and how does it influence weather? Bull. Amer. Meteor. Soc. 2017; 98(1): 37–44. https://doi.org/10.1175/BAMS-D-15-00212.1
8. Hurwitz M.M., Newman P.A., Li F., Oman L.D., Morgenstern O., Braesicke P., Pyle J.A. Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models. J. Geophys. Res. 2010; 115(D7): D07105. https://doi.org/10.1029/2009JD012788
9. Solomon S. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 1999; 37(3): 275–316. https://doi.org/10.1029/1999RG900008
10. Newman P.A., Kawa S.R., Nash E.R. On the size of the Antarctic ozone hole. Geophys. Res. Lett. 2004; 31(21): L21104. https://doi.org/10.1029/2004GL020596
11. Vargin P.N., Nikiforova M.P., Zvyagintsev A.M. Variability of the Antarctic ozone anomaly in 2011–2018. Russ. Meteorol. Hydrol. 2020; 45(2): 63–73. https://doi.org/10.3103/S1068373920020016
12. Smyshlyaev S.P., Blakitnaya P.A., Motsakov M.A. Numerical modeling of the influence of physical and chemical factors on the interannual variability of Antarctic ozone. Russ. Meteorol. Hydrol. 2020; 45(3): 153–160. https://doi.org/10.3103/S1068373920030024
13. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate. 2007; 20(3): 449–469. https://doi.org/10.1175/JCLI3996.1
14. Charlton A.J., Polvani L.M., Perlwitz J., Sassi F., Manzini E., Shibata K., Pawson S., Nielsen J.E., Rind D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate. 2007; 20(3): 470–488. https://doi.org/10.1175/JCLI3994.1
15. Butler A.H., Seidel D.J., Hardiman S.C., Butchart N., Birner T., Match A. Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. 2015; 96(11): 1913–1928. https://doi.org/10.1175/BAMS-D-13-00173.1
16. Charlton A.J., O’Neill A., Lahoz W.A., Berrisford P. The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: Dynamical evolution. J. Atmos. Sci. 2005; 62(3): 590–602. https://doi.org/10.1175/JAS-3318.1
17. Safieddine S., Bouillon M., Paracho A.-C., Jumelet J., Tencé F., Pazmino A., Goutail F., Wespes C., Bekki S., Boynard A., Hadji-Lazaro J., Coheur P.-F., Hurtmans D., Clerbaux C. Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. 2020; 47(14): e2020GL087810. https://doi.org/10.1029/2020GL087810
18. Lim E.-P., Hendon H.H., Butler A.H., Thompson D.W.J., Lawrence Z.D., Scaife A.A., Shepherd T.G., Polichtchouk I., Nakamura H., Kobayashi C., Comer R., Coy L., Dowdy A., Garreaud R.D., Newman P.A., Wang G. The 2019 Southern Hemisphere stratospheric polar vortex weakening and its impacts. B. Am. Meteorol. Soc. 2021; 102(6): E1150–E1171. https://doi.org/10.1175/BAMS-D-20-0112.1
19. Roy R., Kuttippurath J., Lefèvre F., Raj S., Kumar P. The sudden stratospheric warming and chemical ozone loss in the Antarctic winter 2019: comparison with the winters of 1988 and 2002. Theor. Appl. Climatol. 2022; 149: 119–130. https://doi.org/10.1007/s00704-022-04031-6
20. Wargan K., Weir B., Manney G.L., Cohn S.E., Livesey N.J. The anomalous 2019 Antarctic ozone hole in the GEOS constituent data assimilation system with MLS observations. J. Geophys. Res. 2020; 125(18): e2020JD033335. https://doi.org/10.1029/2020JD033335
21. Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented Antarctic ozone holes of 2020 and 2021. Geophys. Res. Lett. 2022; 49(10): e2022GL098064. https://doi.org/10.1029/2022GL098064
22. Klekociuk A.R., Tully M.B., Krummel P.B., Henderson S.I., Smale D., Querel R., Nichol S., Alexander S.P., Fraser P.J., Nedoluha G. The Antarctic ozone hole during 2020. J. South. Hemisph. Earth Syst. Sci. 2021; 72(1): 19–37. https://doi.org/10.1071/ES21015
23. Zuev V.V., Savelieva E.S., Pavlinsky A.V., Sidorovski E.A. The unprecedented duration of the 2020 ozone depletion in the Antarctic. Dokl. Earth Sci. 2023; 509(1): 358–362. https://doi.org/10.1134/S1028334X22601754
24. Stenchikov G., Hamilton K., Stouffer R.J., Robock A., Ramaswamy V., Santer B., Graf H.-F. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 2006; 111: D07107. https://doi.org/10.1029/2005JD006286
25. Driscoll S., Bozzo A., Gray L.J., Robock A., Stenchikov G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. 2012; 117: D17105. https://doi.org/10.1029/2012JD017607
26. Zuev V.V., Savelieva E. The cause of the spring strengthening of the Antarctic polar vortex. Dynam. Atmos. Oceans. 2019; 87: 101097. https://doi.org/10.1016/j.dynatmoce.2019.101097
27. Zuev V.V., Savelieva E. The cause of the strengthening of the Antarctic polar vortex during October–November periods. J. Atmos. Sol.-Terr. Phys. 2019; 190: 1–5. https://doi.org/10.1016/j.jastp.2019.04.016
28. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz‐Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., de Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani R., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S., Thépaut J.‐N. The ERA5 global reanalysis. Q. J. Roy. Meteor. Soc. 2020; 146(729): 1–51. https://doi.org/10.1002/qj.3803
29. Gelaro R., McCarty W., Suárez M.J., Todling R., Molod A., Takacs L., Randles C.A., Darmenov A., Bosilovich M.G., Reichle R., Wargan K., Coy L., Cullather R., Draper C., Akella S., Buchard V., Conaty A., da Silva A.M., Gu W., Kim G.-K., Koster R., Lucchesi R., Merkova D., Nielsen J.E., Partyka G., Pawson S., Putman W., Rienecker M., Schubert S.D., Sienkiewicz M., Zhao B. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate. 2017; 30(14): 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
30. Zuev V.V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method. J. Earth Syst. Sci. 2023; 132(1): 39. https://doi.org10.1007/s12040-023-02060-x
31. Zuev V.V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge. Pure Appl. Geophys. 2022; 179(6–7): 2609–2616. https://doi.org/10.1007/s00024022-03054-4
32. Yulaeva E., Holton J.R., Wallace J.M. On the cause of the annual cycle in tropical lower-stratospheric temperatures. J. Atmos. Sci. 1994; 51(2): 169–174. https://doi.org/10.1175/1520-0469(1994)051<0169:OTCOTA>2.0.CO;2
33. Steinbrecht W., Hassler B., Claude H., Winkler P., Stolarski R.S. Global distribution of total ozone and lower stratospheric temperature variations. Atmos. Chem. Phys. 2003; 3(5): 1421–1438. https://doi.org/10.5194/acp-3-1421-2003
34. Noguchi S., Kuroda Y., Kodera K., Watanabe S. Robust enhancement of tropical convective activity by the 2019 Antarctic sudden stratospheric warming. Geophys. Res. Lett. 2020; 47(15): e2020GL088743. https://doi.org/10.1029/2020GL088743
Рецензия
Для цитирования:
Zuev V.V., Savelieva E.S., Krupchatnikov V.N., Borovko I.V., Pavlinsky A.V., Chkhetiani O.G., Maslennikova E.A. Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere. Проблемы Арктики и Антарктики. 2023;69(4):452-463. https://doi.org/10.30758/0555-2648-2023-69-4-452-463
For citation:
Zuev V.V., Savelieva E.S., Krupchatnikov V.N., Borovko I.V., Pavlinsky A.V., Chkhetiani O.G., Maslennikova E.A. Antarctic polar vortex dynamics in 2019 and 2020 under the influence of the subtropical stratosphere. Arctic and Antarctic Research. 2023;69(4):452-463. (In Russ.) https://doi.org/10.30758/0555-2648-2023-69-4-452-463