Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Пространственная изменчивость трендов значительных высот волн в Карском море

https://doi.org/10.30758/0555-2648-2024-70-1-6-20

Аннотация

В статье проведен пространственный анализ трендов средних, максимальных за год, а также 95-го перцентиля высот значимых волн в Карском море. Анализ трендов выполнен на основе результатов моделирования за период с 1979 по 2021 г. В качестве исходных данных использовались данные о ветре и концентрации льда из реанализов NCEP/CFSR/CFSv2. Оценка трендов высот волн проводилась как для всего периода, так и для безледного. На всей акватории моря величины трендов для среднегодовых значений положительные. Максимальная величина характерна для границы с Баренцевым морем и едва превышает 0,2 м/10 лет. Для безледного периода максимальные величины трендов характерны и для среднегодовых, и для 95-го перцентиля высот волн в северной части моря (максимальные величины трендов ~0,25 м/10 лет и ~0,5 м/10 лет соответственно).

Об авторах

Е. Е. Круглова
Московский государственный университет им. М.В. Ломоносова; Институт океанологии им. П.П. Ширшова РАН
Россия

Москва



С. А. Мысленков
Московский государственный университет им. М.В. Ломоносова
Россия

Москва



В. С. Платонов
Московский государственный университет им. М.В. Ломоносова
Россия

Москва



Список литературы

1. Matveeva T.A., Semenov V.A. Regional features of the Arctic Sea ice area changes in 2000–2019 versus 1979–1999 periods. Atmosphere. 2022;13(9):1434. https://doi.org/10.3390/atmos13091434

2. Алексеев Г.В., Александров Е.И., Глок Н.И., Иванов Н.Е., Смоляницкий В.М., Харланенкова Н.Е., Юлин А.В. Эволюция площади морского ледового покрова Арктики в условиях современных изменений климата. Исследование Земли из космоса. 2015;(2):5–19. https://doi.org/10.7868/S0205961415020025

3. Serreze M. C., Stroeve J. Arctic Sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015;373(2045):20140159. https://doi.org/10.1098/rsta.2014.0159

4. Шалина Е.В. Сокращение ледяного покрова Арктики по данным спутникового пассивного микроволнового зондирования. Современные проблемы дистанционного зондирования Земли из космоса. 2013;10(1):328–336.

5. Wang X.L., Feng Y., Swail V.R., Cox A. Historical changes in the Beaufort–Chukchi–Bering Seas surface winds and waves, 1971–2013. Journal of Climate. 2015;28(19):7457–7469. https://doi.org/10.1175/JCLI-D-15-0190.1

6. Thomson J., Fan Y., Stammerjohn S., Stopa J., Rogers W.E., Girard-Ardhuin F., Ardhuin F., Shen H., Perrie W., Shen H., Ackley S., Babanin A., Liu Q., Guest P., Maksym T., Wadhams P., Fairall C., Persson O., Doble M., Graber H., Lund B., Squire V., Gemmrich J., Lehner S., Holt B., Meylan M., Brozena J., Bidlot J.R. Emerging trends in the sea state of the Beaufort and Chukchi seas. Ocean Modelling. 2016;105:1–12. https://doi.org/10.1016/j.ocemod.2016.02.009

7. Liu Q., Babanin A. V., Zieger S., Young I.R., Guan C. Wind and wave climate in the Arctic Ocean as observed by altimeters. Journal of Climate. 2016;29:7957–7975. https://doi.org/10.1175/JCLI-D-16-0219.1

8. Casas-Prat M., Wang X.L. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves. Geophysical Research Letters. 2020;47(15):e2020GL088100. https://doi.org/10.1029/2020GL088100

9. Waseda T., Nose T., Kodaira T., Sasmal K., Webb A. Climatic trends of extreme wave events caused by Arctic сyclones in the western Arctic Ocean. Polar Science. 2021;27:100625. https://doi.org/10.1016/j.polar.2020.100625

10. Waseda T., Webb A., Sato K., Inoue J., Kohout A., Penrose B., Penrose S. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Scientific reports. 2018;8(1):4489. https://doi.org/10.1038/s41598-018-22500-9

11. Li J.G. Ocean surface waves in an ice-free Arctic Ocean. Ocean Dynamics. 2016;66(8):989–1004. https://doi.org/10.1007/s10236-016-0964-9

12. Лопатухин Л.И., Бухановский А.В., Чернышева Е.С. Справочные данные по режиму ветра и волнения Японского и Карского морей. СПб.: Российский Морской регистр судоходства; 2009. 358 c.

13. Myslenkov S., Platonov V., Kislov A., Silvestrova K., Medvedev I. Thirty-Nine-Year wave hindcast, storm activity, and probability analysis of storm waves in the Kara Sea. Water. 2021;13(5):648. https://doi.org/10.3390/w13050648

14. Круглова Е.Е., Мысленков С.А. Анализ штормовой активности в Карском море по данным волновой модели WAVE WATCH III. Гидрометеорология и экология. 2022;(69):675–690. https://doi.org/10.33933/2713-3001-2022-69-675-690

15. Duan C., Dong S., Wang Z. Wave climate analysis in the ice-free waters of Kara Sea. Regional Studies in Marine Science. 2019;(30):100719. https://doi.org/10.1016/j.rsma.2019.100719

16. Myslenkov S., Kruglova E., Medvedeva A., Silvestrova K., Arkhipkin V., Akpinar A., Dobrolyubov S. Number of storms in several Russian Seas: trends and connection to large-scale atmospheric indices. Russ. J. Earth. Sci. 2023; 23(3):ES3002. https://doi.org/10.2205/2023es000828

17. Мысленков С.А., Платонов В.С., Сильвестрова К.П., Добролюбов С.А. Рост штормовой активности в Карском море с 1979 по 2019 г. по данным моделирования. Доклады Российской академии наук. Науки о Земле. 2021;498(2):175–182. https://doi.org/10.31857/S2686739721060128

18. Tolman H., Abdolali A., Accensi M., Alves J.-H., Ardhuin F., Babanin A., Barbariol F., Benetazzo A., Bidlot J., Booij N., Boutin G., Bunney C., Campbell T., Chalikov D., Chawla A., Cheng S., Collins C., Filipot J.-F., Flampouris S., Liang Z. User manual and system documentation of WAVEWATCH III (R) version 6.07. College Park, MD, USA: Tech.Note; 2019. 465 p.

19. Sharmar V., Markina M. Evaluation of interdecadal trends in sea ice, surface winds and ocean waves in the Arctic in 1980-2019. Russian Journal of Earth Sciences. 2021;21(2):ES2002. https://doi.org/10.2205/2020ES000741

20. Cabral I.S., Young I.R., Toffoli A. Long-term and seasonal variability of wind and wave extremes in the Arctic Ocean. Frontiers in Marine Science. 2022;(9):802022. https://doi.org/10.3389/fmars.2022.802022

21. Тимофеева А.Б., Шаратунова М.В., Прохорова У.В. Оценка многолетней изменчивости толщины припая в морях Российской Арктики по данным полярных станций. Проблемы Арктики и Антарктики. 2023;69(3):310–330. https://doi.org/10.30758/0555-2648-2023-69-3-310-330

22. Степина А.А., Подрезова Н.А. Оценка изменчивости площади льда Карского моря. В кн.: Материалы Всероссийской научно-практической конференции Гидрометеорология и физика атмосферы: современные достижения и тенденции развития, 21–23 марта 2023. СПб.: РГГМУ. 2023. С. 465–467.

23. Федоров В.М., Залиханов А.М., Дегтярев К.С. Особенности межгодовой изменчивости площади морских льдов в Северном полушарии. Арктика и Антарктика. 2023;(2):102–114. https://doi.org/10.7256/2453-8922.2023.2.41008

24. Semenov V.A., Latif M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environmental Research Letters. 2015;10(5):054020. https://doi.org/10.1088/1748-9326/10/5/054020

25. Мохов И.И., Семенов В.А., Хон В.Ч., Погарский Ф.А. Изменения распространения морских льдов в Арктике и связанные с ними климатические эффекты: диагностика и моделирование. Лед и снег. 2013;53(2):53–62.


Рецензия

Для цитирования:


Круглова Е.Е., Мысленков С.А., Платонов В.С. Пространственная изменчивость трендов значительных высот волн в Карском море. Проблемы Арктики и Антарктики. 2024;70(1):6-20. https://doi.org/10.30758/0555-2648-2024-70-1-6-20

For citation:


Kruglova E.E., Myslenkov S.A., Platonov V.S. Spatial trend analysis of significant wave heights in the Kara Sea. Arctic and Antarctic Research. 2024;70(1):6-20. (In Russ.) https://doi.org/10.30758/0555-2648-2024-70-1-6-20

Просмотров: 377


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)