Preview

Arctic and Antarctic Research

Advanced search

Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century

https://doi.org/10.30758/0555-2648-2024-70-3-310-322

Abstract

The annual water temperature in the major water masses of the Barents Sea (BS) has significantly increased since the early 2000s. Advective heat transport from the neighboring water areas and heat exchange through the sea surface are the major factors, which shape the hydrological conditions in the BS. The paper estimates the contributions of heat exchange at the sea-atmosphere boundary and advective heat transport to changes in the average water temperature of the BS for the entire sea area. The average annual heat balance of the BS is calculated using atmospheric and oceanic reanalysis data. The change in the average temperature of the BS water is estimated taking into account the heat consumption for ice melting. The average surface heat balance from 1993 to 2018 was negative throughout the entire sea area: –70…–100 W/m2 in the south and –10…–20 W/m2 in the north. The advective heat supply was calculated for 9 straits with neighboring water areas. The determining source of advective heat is the influx of Atlantic waters from the Norwegian Sea between Cape Nordkapp and Bear Island. An average of 40.8 TW of advective heat is supplied through this margin. The calculations showed the predominance of annual heat influx due to advection over heat loss from the sea surface. This excess heat influx resulted in an estimated increase in the water temperature of the BS from 1993 to 2018 at a rate of 0.28 °C per year (taking into account the heat consumption for ice melting). In conclusion, it can be argued that the analysis has validated the hypothesis proposed in the article about compensation of heat losses from the surface of the BS by advective heat flow. The hypothesis is quantitatively confirmed by calculations on a simple box model (with an accuracy of up to an order of magnitude) based on atmospheric and oceanic reanalysis data. The ERA5 and GLORYS12V1 reanalysis data reliably describe the basic patterns of observed variability of ocean, sea ice and atmospheric parameters in the Barents Sea.

About the Authors

A. A. Sumkina
Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Alexandra A. Sumkina

Moscow



A. V. Smirnov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

Alexander V. Smirnov

St. Petersburg



K. K. Kivva
Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Kirill K. Kivva

Moscow

 



V. V. Ivanov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Lomonosov Moscow State University
Russian Federation

Vladimir V. Ivanov

St. Petersburg, Moscow

 



References

1. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea–ice import. Nature Climate Change. 2018;8(7):634–639. https://doi.org/10.1038/s41558-018-0205-y

2. Arthun M., Onarheim I.H., Dörr J., Eldevik T. The seasonal and regional transition to an ice‐free Arctic. Geophysical Research Letters. 2021;48(1):e2020GL090825. https://doi.org/10.1029/2020GL090825

3. Ivanov V.V., Arkhipkin V.S., Lemeshko Ye.M., Myslenkov S.A., Smirnov A.V., Surkova G.V., Tuzov F.K., Chechin D.G., Shestakova A.A. Changes in hydrometeorological conditions in the Barents Sea as an indicator of climatic trends in the Eurasian Arctic in the 21st century. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya = Lomonosov Geography Journal. 2022;(1):13–25. (In Russ.)

4. Moore F.C., Lacasse K., MachK. J., Shin Y.A., Gross L.J., Beckage B. Determinants of emissions pathways in the coupled climate–social system. Nature. 2022;603(7899):103–111. https://doi.org/10.1038/s41586-022-04423-8

5. Skagseth Ø., Eldevik T., Årthun M., Asbjørnsen H., Lien V.S., Smedsrud L.H. Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. 2020;10(7):661–666. https://doi.org/10.1038/s41558-020-0772-6

6. Ivanov V.V., Tuzov F.K. Formation of dense water dome over the Central Bank under conditions of reduced ice cover in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers. 2021;175:103590. https://doi.org/10.1016/j.dsr.2021.103590

7. Trofimov A.G. Current trends in changes in oceanographic conditions of the Barents Sea. Trudy VNIRO. 2021;186:101–118. (In Russ.). https://doi.org/10.36038/2307-3497-2021-186-101-118

8. Серых И.В., Костяной А.Г. О климатических изменениях температуры Баренцева моря и их возможных причинах. В кн.: А.П. Лисицын (ред.) Система Баренцева моря. М.: ГЕОС; 2021. С. 166–179.

9. Будыко М.И. Тепловой баланс земной поверхности. Л.: Гидрометеоиздат;1956. 256 с.

10. Ашик И.М. (ред.). Моря Российской Арктики в современных климатических условиях. СПб.: ААНИИ; 2021. 360 с.

11. Ожигин В.К., Ившин В.А., Трофимов А.Г., Карсаков А.Л., Анциферов М.Т. (ред). Воды Баренцева моря: структура, циркуляция, изменчивость. Мурманск: Изд-во ПИНРО; 2016. 260 с.

12. Никифоров Е.Г., Шпайхер А.О. Закономерности формирования крупномасштабных колебаний гидрологического режима Северного Ледовитого океана. Л.: Гидрометеоиздат; 1980. 270 с.

13. Ingvaldsen R., Loeng H., Asplin L. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Continental Shelf Research. 2002;22(3):505–519. https://doi.org/10.1016/S0278-4343(01)00070-X

14. Dörr J.S., Årthun M., EldevikT., Madonna E. Mechanisms of regional winter sea‐ice variability in a warming Arctic. Journal of Climate. 2021;34(21):8635–8653. https://doi.org/10.1175/JCLI‐D‐21‐0149.1

15. Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate. 2012;25(13):4736– 4743. https://doi.org/10.1175/JCLI-D-11-00466.1

16. Sorokina S.A., Li C., Wettstein J.J., Kvamstø N.G. Observed atmospheric coupling between Barents Sea ice and the warm Arctic cold-Siberian anomaly pattern. Journal of Climate. 2016;29(2):495– 511. https://doi.org/10.1175/JCLI-D-15-0046.1

17. Cai Z., Yoy Q., Chen H.W., Zhang R., Chen D., Chen J., Kang S., Cohen J. Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters. 2022;17(4):044068. https://doi.org/10.1088/1748-9326/ac5bb3

18. ERA5 reanalysis (European analysis, version 5). https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels (accessed 10.02.2022).

19. Терзиев Ф.С., Гирдюка Г.В. Гидрометеорология и гидрохимия морей СССР. Том 1. Баренцево море Вып. 1. Л.: Гидрометеоиздат; 1990. 280 с.

20. Esau I.N., Chernokulsky A.V. Convective cloud fields in the Atlantic sector of the Arctic: satellite and ground based observations. Izvestiya, Atmospheric and Oceanic Physics. 2015;2:49–63. (In Russ.)

21. Narizhnaya A., Chernokulsky A. Cloud characteristics during intense cold air outbreaks over the Barents sea based on satellite data. Atmosphere. 2024:15(3):317. https://doi.org/10.3390/atmos15030317

22. Sumkina A.A., Ivanov V.V., Kivva K.K. Heat budget of the Barents Sea surface in winter. Lomonosov Geography Journal. 2024;(3):123–134. (In Russ.). https://doi.org/10.55959/MSU0579-9414.5.79.3.10

23. Sumkina A.A., Kivva K.K., Ivanov V.V., Smirnov A.V. Seasonal ice removal in the Barents Sea and its dependence on heat advection by Atlantic waters. Fundamental and Applied Hydrophysics. 2022;15(1):82–97. (In Russ.). https://doi.org/10.59887/fpg/1krp-xbuk-6gpz

24. Sumkina A.A., Kivva K.K., Ivanov V.V. Seasonality of heat exchange on the Barents sea surface. Oceanology. 2023;63(Suppl 1):S65–S71. https://doi.org/10.1134/S0001437023070196

25. Surkova G.V., Romanenko V.A. Climate change and heat exchange between atmosphere and ocean in the Arctic based on data from the Barents and the Kara sea. Arctic and Antarctic Research. 2021;67(3):280–292. (In Russ.). https://doi.org/10.30758/0555-2648-2021-67-3-280-292

26. Polyakov I.V., Ingvaldsen R.B., Pnyushkov A.V., Bhatt U.S., Francis J.A., Janout M., Kwok R., Skagseth Ø. Fluctuating Atlantic inflows modulate Arctic atlantification. Science. 2023;381:972– 979. https://doi.org/10.1126/science.adh5158

27. Daily Global Physical Bulletin at 1/12. http://bulletin.mercator-ocean.fr/en/PSY4#3/75.50/-51.33 (accessed 10.05.2024).

28. Loeng H. Features of the physical oceanographic conditions of the Barents Sea. Polar research. 1991;10(1):5–18. https://doi.org/10.3402/polar.v10i1.672

29. Bengtsson L., Semenov V.A., Johannessen O.M. The early-twentieth-century warming in the Arctic — a possible mechanism. Journal of Climate. 2004;17(20):4045–4057. https://doi.org/10.1175/1520-0442(2004)0172.0.CO;2

30. Arthun M., Schrum C. Ocean surface heat flux variability in the Barents Sea. Journal of Marine Systems. 2010;83(1–2):88–98. https://doi.org/10.1016/j.jmarsys.2010.07.003

31. Добровольский А.Д., Залогин Б. С. Моря СССР. М.: Изд-во Московского ун-та; 1982. 192 с.

32. Gill A. E. Atmosphere-ocean dynamics. Cambridge: Academic press; 1982. 660 p.

33. Доронин Ю.П., Хейсин Д.Е. Морской лед. Л.: Гидрометеоиздат; 1975. 320 c.

34. Maykut G.A. The surface heat and salt balance. In: N. Untersteiner (ed.). The geophysics of sea ice. New York: Plenum; 1986. P. 395–463.

35. 35 Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013;51(3):415–449. https://doi.org/10.1002/rog.20017


Review

For citations:


Sumkina A.A., Smirnov A.V., Kivva K.K., Ivanov V.V. Relative contribution of the ocean-air heat exchange and advective heat transport to the increase of the Barents Sea water temperature in the early 21st century. Arctic and Antarctic Research. 2024;70(3):310-322. (In Russ.) https://doi.org/10.30758/0555-2648-2024-70-3-310-322

Views: 256


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)