Preview

Arctic and Antarctic Research

Advanced search

Seasonal changes in the physicochemical characteristics of atmospheric aerosol at the research station “Ice Base Baranova Cape” (Severnaya Zemlya archipelago)

https://doi.org/10.30758/0555-2648-2024-70-3-338-352

Abstract

Since 2017 we have carried out aerosol sampling at the research station “Ice Base Baranova Cape” (Novaya Zemlya Archipelago) with the purpose of studying the variations in aerosol physicochemical characteristics: the concentrations of ions, microelements, organic and elemental carbon (ОС and ЕС), as well as the isotopic composition of carbon δ13C in the aerosol. The average summed concentrations of ions throughout the period of measurements were 1,99 μg/m3, the concentrations of elements were 51,1 ng/m3; and those of ОС and ЕС were 398 and 25 ng/m3, respectively; the isotopic composition of carbon δ13C was–27.6 ‰. The main contribution (73 %) to the ion composition of atmospheric aerosol is due to “marine” ions Na+ and Cl-, and the contribution to the elemental composition is due to terrogenic Fe and Al (71 %). The large enrichment coefficients (with respect to Na+ in sea water) were manifested for ions SO 2-, K+, and Ca2+. Aerosol enrichment by these ions is the largest in the warm period. In the aerosol elemental composition, we identified large enrichment coefficients (with respect to Al in the Earth’s crust) in elements Se, Sn, Sb, Mo, As, Zn, Cu, Cr, Pb, and Cd, indicating their technogenic origin. The nearest sources of aerosol enrichment by technogenic elements are plants for mining and processing mineral resources in the Taymyr Autonomous Okrug. The statistical generalization of the multiyear data allowed us to calculate for the first time the annual average behavior of the chemical composition of aerosol in the study region. With respect to the seasonal variations, the ions and elements can be divided into three groups: 1) with winter maximum (Na+, Cl-, Mg2+, Br-; Se, Cd, V, Co, As); 2) with summer (PO 3-, NH +, CH SO3-, F-) or autumn (Al, Ti, Li, Sr, Fe, Zn, Ba, Ni) maximum; 3) with poorly defined or indefinite variations in other ions (NO -, K+, SO 2-, Ca2+) and elements (Cu, Pb, Mo, W, Sn, Cr, Sb, Mn). As most of the other characteristics, the annual behaviors of the ОС and ЕС concentrations are characterized by the general maximum in the winter-spring period. In addition, a second maximum is manifested in the ОС content in the summer-autumn period. The average monthly carbon isotopic composition in the aerosol varies in the range from –28.3 ‰ (February) to –27.3 ‰ (May).

About the Authors

S. M. Sakerin
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

Sergey M. Sakerin

St. Petersburg



L. P. Golobokova
Limnology Institute, SB RAS
Russian Federation

Lyudmila P. Golobokova

Irkutsk



D. A. Kalashnikova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Institute of Monitoring of Climatic and Ecological Systems, SB RAS
Russian Federation

Daria A. Kalashnikova

St. Petersburg, Tomsk



M. А. Loskutova
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Russian Federation

Marina A. Loskutova

Санкт-Петербург



N. A. Onischuk
Limnology Institute, SB RAS
Russian Federation

Natalya A. Onischuk

Irkutsk



V. V. Polkin
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

Victor V. Polkin

St. Petersburg



E. A. Popova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; ФГБНУ Институт химической кинетики и горения им. В.В. Воеводского СО РАН
Russian Federation

Svetlana A. Popova

St. Petersburg, Новосибирск



D. D. Rize
ГНЦ РФ Арктический и антарктический научно-исследовательский институт
Russian Federation

Denis D. Rize

Санкт-Петербург



G. V. Simonova
Institute of Monitoring of Climatic and Ecological Systems, SB RAS
Russian Federation

Galina V. Simonova

Tomsk



Yu. S. Turchinovich
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

Yuri S. Turchinovich

St. Petersburg



T. V. Khodzher
Limnology Institute, SB RAS
Russian Federation

Tamara V. Khodzher

Irkutsk



M. Yu. Shikhovtsev
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute; Limnology Institute, SB RAS
Russian Federation

Mikhail Yu. Shikhovtsev

St. Petersburg, Irkutsk



References

1. Kondratyev K.Ya., Ivlev L.S., Krapivin V.F., Varotsos C.A. Atmospheric aerosol properties, formation processes, and impacts: from nano- to global scales. Chichester: Springer/PRAXI; 2006. 572 p.

2. Physics and Chemistry of the Arctic Atmosphere. Alexander Kokhanovsky A., Tomasi C. (eds). Springer Cham; 2020. 717 p. https://doi.org/10.1007/978-3-030-33566-3

3. Haywood J., Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 2000;38(4):513–543. https://doi.org/10.1029/1999RG000078

4. Abbatt J.P.D., Leaitch W.R., Aliabadi A.A., Bertram A.K., Blanchet J.-P., Boivin-Rioux A., Bozem H., Burkart J., Chang R.Y.W., Charette J., Chaubey J.P., Christensen R.J., Cirisan A., Collins D.B., Croft B., Dionne J., Evans G.J., Fletcher C.G., Gal M., Ghahremaninezhad R., Girard E., Gong W., Gosselin M., Gourdal M., Hanna S.J., Hayashida H., Herber A.B., Hesaraki S., Hoor P., Huang L., Hussherr R., Irish V.E., Keita S.A., Kodros J.K., Kollner F., Kolonjari F., Kunkel D., Ladino L.A., Law K., Levasseur M., Libois Q., Liggio J., Lizotte M., Macdonald K.M., Mahmood R., Martin R.V., Mason R.H., Miller L.A., Moravek A., Mortenson E., Mungall E.L., Murphy J.G., Namazi M., Norman A.-L., O’Neill N.T., Pierce J.R., Russell L.M., Schneider J., Schulz H., Sharma S., Si M., Staebler R.M., Steiner N.S., Thomas J.L., von Salzen K., WentzellJ.J.B., Willis M.D., Wentworth G.R., Xu J.-W., Yakobi-Hancock J.D. Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics. 2019;19:2527–2560. https://doi.org/10.5194/acp-19-2527-2019

5. Шевченко В.П. Влияние аэрозолей на среду и морское осадконакопление в Арктике. М.: Наука; 2006. 226 с.

6. Shindell D., Kuylenstierna J.C.I., Vignati E., van Dingenen R., Amann M., Klimont Z., Anenberg S.C., Muller N., Janssens-Maenhout G., Raes F., Schwartz J., Faluvegi G., Pozzoli L., Kupiainen K., HöglundIsaksson L., Emberson L., Streets D., Ramanathan V., Hicks K., Oanh N.T.K., Milly G., Williams M., Demkine V., Fowler D. Simultaneously mitigating near-term climate change and improving human health and food security. Science. 2012;335(6065):183–189. https://doi.org/10.1126/science.1210026

7. Schmale J., Arnold S., Law K.S., Thorp T., Anenberg S., Simpson W., Mao J., Pratt K.A. Local Arctic air pollution: A neglected but serious problem. Earth’s Future. 2018;6:1385–1412. https://doi.org/10.1029/2018EF000952

8. Schmale J., Sharma S., Decesari S., Pernov J., Massling A., Hansson H.C., von Salzen K., Skov H., Andrews E., Quinn P.K., Upchurch L.M., Eleftheriadis K., Traversi R., Gilardoni S., Mazzola M., Laing J., Hopke P. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chemistry and Physics. 2022;22:3067–3096. https://doi.org/10.5194/acp-22-3067-2022

9. Quinn P.K., Bates T.S., Schulz K., Shaw G.E. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008. Atmospheric Chemistry and Physics. 2009;9:8883–8888. https://doi.org/10.5194/acp9-8883-2009

10. Sirois A., Barrie L.A. Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995. J. Geophys. Res. 1999;104(D9):11599–11618. https://doi.org/10.1029/1999JD900077

11. Fenger M., Sørensen L.L., Kristensen K., Jensen B., Nguyen Q.T., Nøjgaard J.K., Massling A., Skov H., Becker T., Glasius M. Sources of anions in aerosols in northeast Greenland during late winter. Atmospheric Chemistry and Physics. 2013;13:1569–1578. https://doi.org/10.5194/acp-13-1569-2013

12. Sakerin S.M., Kabanov D.M., Makarov V.I., Polkin V.V., Popova S.A., Chankina O.V., Pochufarov A.O., Radionov V.F., Rize D.D. Spatial distribution of atmospheric aerosol physicochemical characteristics in Russian sector of the Arctic Ocean. Atmosphere. 2020;11(11):1170. https://doi.org/10.3390/atmos1111170

13. Antokhina O.Yu., Antokhin P.N., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Berdashkinova O.I., Golobokova L.P., Davydov D.K., Ivlev G.A., Kozlov A.V., Onischuk N.A., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V., Khodzher T.V. Air composition over the Russian Arctic. 4. Atmospheric aerosols. Optika Atmosfery i Okeana = Ocean. Opt. 2024;37(3):214–224. (In Russ.). https://doi.org/10.15372/AOO20240305

14. Bond T.C., Streets D.G., Yarber K.F., Nelson S.M., Woo J.-H., Klimont Z. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. 2004;109:D14203. https://doi.org/10.1029/2003JD003697

15. Hirdman D., Sodemann H., Eckhardt S., Burkhart J.F., Jefferson A., Mefford T., Quinn P.K., Sharma S., Strom J., Stohl A. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics. 2010;10:669– 693. https://doi.org/10.5194/acp-10-669-2010

16. Vinogradova A.A., Ivanova Yu.A. Heavy metals in the atmosphere over the Northern coast of Eurasia: Interannual variations in winter and summer. Izv. Atmos. Ocean. Phys. 2017;53(7): 711–718. https://doi.org/10.1134/S000143381707009X

17. Vinogradova A.A., Ivanova Yu.A. Air mass and pollution transport to the Arctic Russian islands (1986-2016): Long-term, year to year, and seasonal variations. Geophysical processes and biosphere. 2017;16(4):5–20. (In Russ.). https://doi.org/10.21455/GPB2017.4-1

18. Quinn P.K., Shaw G., Andrews E., Dutton E.G., Ruoho-Airola T., Gong S.L. Arctic haze: Current trends and knowledge gaps. Tellus. 2007;59B:99–114. https://doi.org/10.1111/j.1600-0889.2006.00238.x

19. Shaw G.E. The Arctic haze phenomenon. Bull. Am. Meteor. Soc. 1995;76:2403–2414. https://doi.org/10.1175/1520-0477(1995)0762.0.CO;2

20. Arnold S.R., Law K.S., Brock C.A., Thomas J.L., Starkweather S., von Salzen K., Stohl A., Sharma S., Lund M., Flanner M.G., Petäjä T., Tanimoto H., Gamble J., Dibb J.E., Melamed M., Johnson N., Fidel M., Tynkkynen V.-P., Baklanov A., Bozem H. Arctic air pollution: Challenges and opportunities for the next decade. Elementa: Science of the Anthropocene. 2016;4:000104. https://doi.org/10.12952/journal.elementa.000104

21. Golobokova L.P., Berdashkinova O.I., Loskutova M.A., Rize D.D., Onischuk N.A., Sakerin S.M., Turchinovich Yu.S. Long-term studies of atmospheric aerosol chemical composition at the Cape Baranov Ice Base Station. Atmos. Ocean. Opt. 2024;37(1):14–23. https://doi/org/10.1134/S1024856023700033

22. Sakerin S.M., Golobokova L.P., Kabanov D.M., Kalashnikova D.A., Kozlov V.S., Kruglinsky I.A., Makarov V.I., Makshtas A.P., Popova S.A., Radionov V.F., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Khuriganowa O.I., Chankina O.V., Chernov D.G. Measurements of physicochemical characteristics of atmospheric aerosol at Research Station Ice Base Cape Baranov in 2018. Atmos. Ocean. Opt. 2019;32(5):511–520. https://doi.org/10.1134/S1024856019050130

23. Golobokova L.P., Kruglinsky I.A., Pochufarov A.O., Marinaite I.I., Onishchuk N.A., Kravchishina M.D., Flint M.V., Shikhovtsev M.Yu., Khuriganov O.I. Chemical composition of atmospheric aerosol in Arctic Regions in summer 2021. Izvestiya, Atmospheric and Oceanic Physics. 2023;59(1):S70–S80. https://doi.org/10.1134/S000143382313008X

24. Makarov V.I., Koutsenogii K.P., Koutsenogii P.K. Daily and seasonal changes of organic and inorganic carbon content in atmospheric aerosol Novosibirsk region. J. Aer. Sci. 1999;30:S255–S256. https://doi.org/10.1016/S0021-8502(99)80139-6

25. Лебедев А.Т. Масс-спектрометрия для анализа объектов окружающей среды. М.: Техносфера; 2013. 632 с.

26. Pol’kin V.V., Shchelkanov N.N., Golobokova L.P., Panchenko M.V. Comparison of the techniques for estimating the contribution of continental and marine sources into ion composition of near-water aerosol of the White Sea. Atmos. Ocean. Opt. 2008;21(1):17–19.

27. Tsunogai S., Saito O., Yamada K., Nakay S. Chemical сomposition of oceanic aerosol. J. Geophys. Res. 1972;77(27):5283–5292. https://doi.org/10.1029/JC077i027p05283

28. Xu G., Gao Y. Atmospheric trace elements in aerosols observed over the Southern Ocean and coastal East Antarctica. Polar Res. 2014;33:23973. https://doi.org/10.3402/polarv.33.23973

29. Pratt K.A., Custard K.D., Shepson P.B., Douglas T.A., Pöhler D., General S., Zielcke J., Simpson W.R., Platt U., Tanner D.J., Huey L.G., Carlsen M., Stirm B.H. Photochemical production of molecular bromine in Arctic surface snowpacks. Nature Geoscience Letters. 2013;6:351–356. https://doi/org/10.1038/NGEO1779

30. Sakerin S.M., Kabanov D.M., Loskutova M.A., Rize D.D., Chernov D.G., Turchinovich Yu.S. Characteristics of aerosol at the research base “Ice Cape Baranova” in 2018–2023. Arctic and Antarctic Research. 2023;69(4):421–434. (In Russ.). https://doi.org/10.30758/0555-2648-2023-69-4-421-434

31. Полькин В.В., Голобокова Л.П., Онищук Н.А., Сакерин С.М., Шевченко В.П., Шиховцев М.Ю. Статистическое обобщение ионного и элементного состава аэрозоля в Евразийском секторе Северного Ледовитого океана. Оптика атмосферы и океана. Физика атмосферы. Труды XXX Международного симпозиума. С-Петербург, 1–5 июля 2024 г. В90-В93.

32. Vinogradova A.A., Kotova E.I., Topchaya V.Yu. Atmospheric transport of heavy metals to regions of the north of the European territory of Russia. Geogr. Nat. Resour. 2017;38(1):78–85. (In Russ.)

33. Attri P., Mani D., Satyanarayanan M., Reddy D.V., Kumar D., Sarkar S., Kumar S., Hegde P. Atmospheric aerosol chemistry and source apportionment of PM10 using stable carbon isotopes and PMF modelling during fireworks over Hyderabad, southern India. Heliyon. 2024;10(5):E26746. https://doi.org/10.1016/j.heliyon.2024.e26746

34. Mouteva G.O., Czimczik C.I., Fahrni S.M., Wiggins E.B., Rogers B.M., Veraverbeke S., Xu X., Santos G.M., Henderson J., Miller C.E., Randerson J.T. Black carbon aerosol dynamics and isotopic composition in Alaska linked with boreal fire emissions and depth of burn in organic soils. Global Biogeochem. Cycles. 2015;29(11):1977–2000. https://doi.org/10.1002/2015GB005247


Review

For citations:


Sakerin S.M., Golobokova L.P., Kalashnikova D.A., Loskutova M.А., Onischuk N.A., Polkin V.V., Popova E.A., Rize D.D., Simonova G.V., Turchinovich Yu.S., Khodzher T.V., Shikhovtsev M.Yu. Seasonal changes in the physicochemical characteristics of atmospheric aerosol at the research station “Ice Base Baranova Cape” (Severnaya Zemlya archipelago). Arctic and Antarctic Research. 2024;70(3):338-352. (In Russ.) https://doi.org/10.30758/0555-2648-2024-70-3-338-352

Views: 234


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)