Preview

Arctic and Antarctic Research

Advanced search

Spatial distribution and dynamics of thermocirques in a key area of Central Yamal based on remote sensing data

https://doi.org/10.30758/0555-2648-2024-70-3-391-411

Abstract

Т. In recent decades, the distribution and activation of thermodenudation, which leads to the formation of specific landforms — thermocirques (also referred to as retrogressive thaw slumps, RTS), have been intensively studied. In different regions of the cryolithozone and at different time intervals, both activation and stabilization of thermocirques are observed. As a rule, studies focus on the climatic controls of the phenomena observed, the environmental controls are discussed less often. This study presents an analysis of the dynamics of thermocirques in relation to the relief features in a specific key area of Central Yamal. To achieve this aim, the spatial distribution of thermocirques at different geomorphological levels is considered based on multi-temporal remote sensing data. Satellite images obtained in 2009, 2018, and 2023, as well as a global digital elevation model (ArcticDEM), were used. We outlined five geomorphic levels and determined their parameters: area, altitude, steepness, and the aspect of the slopes. Thermocirques were identified in the images and their parameters were measured. The dynamics of the thermocirques were analyzed by their number, area, length, width, slope aspect and angle for the periods 2009–2018 and 2018–2023, and for 14 years in total, separately for each geomorphic level. It was found that thermocirques predominate on the slopes of the III alluvial-marine plain, 5–12° steep. In 14 years, the total area of thermocirques increased by 296 %, and their number — by 61 %. A larger increase in the total area and number of thermocirques occurred during the period 2009–2018 in response to climate extremes in 2012 and 2016. Thermocirques that face west cover a higher total area, partly due to the predominance of such slopes over the area of the key site. In all the years of observation, the average areas and lengths of thermocirques are maximum on south-facing slopes. Some of the results are close to those obtained in other regions of Russia and in North America. In many of the areas studied, the increase in the total area of thermocirques exceeded the increase in their number, which means that the expansion of the existing forms prevails over the inception of the new ones. The discrepancies observed in different studies in the results of assessing the effect of relief on thermocirques are due to both the regional features and differences in satellite imagery and methods of its processing.

About the Authors

I. I. Tarasevich
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation

Ilia I. Tarasevich

Tyumen, Moscow



M. O. Leibman
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina O. Leibman

Tyumen



A. I. Kizyakov
Lomonosov Moscow State University
Russian Federation

Alexander I. Kizyakov

Moscow



N. B. Nesterova
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research; University of Potsdam
Germany

Nina B. Nesterova

Potsdam



A. V. Khomutov
Earth Cryosphere Institute, Tyumen Scientific Centre, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Artem V. Khomutov

Tyumen



References

1. Воскресенский К.С. Современные рельефообразующие процессы на равнинах Севера России. М.: Изд-во географического ф-та МГУ; 2001. 262 с.

2. Лейбман М.О., Кизяков А.И. Криогенные оползни Ямала и Югорского полуострова. М.: Институт криосферы земли СО РАН; 2007. 206 с.

3. Segal R.A., Lantz T.C., Kokelj S.V. Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic. Environmental Research Letters. 2016;11(3):034025. https://doi.org/10.1088/1748-9326/11/3/034025

4. Khomutov A., Leibman M., Dvornikov Yu., Gubarkov A., Mullanurov D., Khairullin R. Activation of cryogenic earth flows and formation of thermocirques in Central Yamal as a result of climate fluctuations. In: Mikoš K., Vilímek V., Yin Y., Sassa K. (eds). Advancing culture of living with landslides. WLF 2017. Cham: Springer International Publishing AG; 2017. P. 209–216. https://doi.org/10.1007/978-3-319-53483-1_24

5. Ramage J.L., Irrgang A.M., Herzschuh U., Morgenstern A., Couture N., Lantuit H. Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada. Journal of Geophysical Research: Earth Surface. 2017;122(9):1619–1634. https://doi.org/10.1002/2017JF004231

6. Babkina E.A., Leibman M.O., Dvornikov Yu.A., Fakashuk N.Yu, Khairullin R.R., Khomutov A.V. Activation of cryogenic processes in Central Yamal as a result of regional and local change in climate and thermal state of permafrost. Russian Meteorology and Hydrology. 2019;44(4):283–290. https://doi.org/10.3103/S1068373919040083

7. Wang B., Paudel B., Li H. Retrogression characteristics of landslides in fine-grained permafrost soils, Mackenzie Valley, Canada. Landslides. 2009;6:121–127. https://doi.org/10.1007/s10346-009-0150-y

8. Séjourné A., Costard F., Fedorov A., Gargani J., Skorve J., Massé M., Mège D. Evolution of the banks of thermokarst lakes in Central Yakutia (Central Siberia) due to retrogressive thaw slump activity controlled by insolation. Geomorphology. 2015;241:31–40. https://doi.org/10.1016/j.geomorph.2015.03.033

9. Ward Jones M.K., Pollard W.H., Jones B.M. Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters. 2019;14(5):055006. https://doi.org/10.1088/1748-9326/ab12fd

10. Swanson D.K., Nolan M. Growth of retrogressive thaw slumps in the Noatak Valley, Alaska, 2010–2016, measured by airborne photogrammetry. Remote Sensing. 2018;10(7):983. https://doi.org/10.3390/rs10070983

11. Nitze I., Grosse G., Jones B.M., Romanovsky V.E., Boike J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nature communications. 2018;9(1):5423. https://doi.org/10.1038/s41467-018-07663-3

12. Zwieback S., Kokelj S.V., Günther F., Boike J., Grosse G., Hajnsek I. Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale. The Cryosphere. 2018;12(2):549–564. https://doi.org/10.5194/tc-12-549-2018

13. Yang Y., Rogers B.M., Fiske G., Watts J., Potter S., Windholz T., Mullen A., Nitze I., Natali S.M. Mapping retrogressive thaw slumps using deep neural networks. Remote Sensing of Environment. 2023;288:113495. https://doi.org/10.1016/j.rse.2023.113495

14. Bernhard P., Zwieback S., Bergner N., Hajnsek I. Assessing volumetric change distributions and scaling relations of retrogressive thaw slumps across the Arctic. The Cryosphere. 2022;16(1):1–15. https://doi.org/10.5194/tc-16-1-2022

15. Runge A., Nitze I., Grosse G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sensing of Environment. 2022;268:112752. https://doi.org/10.1016/j.rse.2021.112752

16. Leibman M.O., Khomutov A.V., Gubarkov A.A., Dvornikov Y.A., Mullanurov D.R. The research station “Vaskiny Dachi”, Central Yamal, West Siberia, Russia — a review of 25 years of permafrost studies. Fennia. 2015;193(1):3–30. https://doi.org/10.11143/45201

17. Данилов И.Д. Плейстоцен морских субарктических равнин. М.: Изд-во МГУ; 1978. 198 с.

18. Дубиков Г.И. Состав и криогенное строение мерзлых толщ Западной Сибири. М.: ГЕОС; 2002. 246 с.

19. Esri. World Imagery Basemap. URL: https://www.arcgis.com/apps/mapviewer/index.html (accessed 17.04.2024).

20. Porter C., Howat I., Noh M.-J., Husby E., Knuvis S., Danish E., Tomko K., Gardiner J., Negrete A., Yadav B., Klassen J., Kelleher C., Cloutier M., Bakker J., Enos J., Arnold G., Bauer G., Morin P. ArcticDEM — Strips, Version 4.1. 2022. URL: https://doi.org/10.7910/DVN/C98DVS (accessed 16.04.2024).

21. Leibman M., Nesterova N., Altukhov M. Distribution and morphometry of Ttermocirques in the north of West Siberia, Russia. Geosciences. 2023;13(6):167. https://doi.org/10.3390/geosciences13060167

22. Доклад об особенностях климата на территории Российской Федерации за 2020 год. URL: https://www.meteorf.gov.ru/upload/pdf_download/doklad_klimat2020.pdf (дата обращения: 11.06.2024).

23. Тарасевич И.И., Письменюк А. А., Нестерова Н. Б., Хайруллин Р. Р. Комплексные исследования термоцирков на Центральном Ямале по данным дистанционных и полевых наблюдений. В кн.: Материалы XXII Всероссийской научно-практической конференции молодых ученых, аспирантов и студентов, с международным участием в г. Нерюнгри, посвященной 30-летнему юбилею Технического института (филиала) СВФУ им. М.К. Аммосова, 28–29 октября 2022 г. Якутск; 2021. С. 170–175. https://doi.org/10.52994/9785751333737_042

24. Streletskaya I.D., Leibman M.O. Сryogeochemical interrelation of massive ground ice, cryopegs, and enclosing deposits of Сentral Yamal. Kriosfera Zemli = Earth’s Cryosphere. 2002;33(12):15– 24. (In Russ.)

25. Архив погоды в Марресале. URL: https://rp5.ru/Архив_погоды_в_Марресале (дата обращения: 02.07.2024)

26. Khomutov A.V., Babkina E.A., Khairullin R.R., Dvornikov Yu.A. Factors of thermal denudation activation and thermocirques activity on central Yamal in 2010–2018. Arctic and Antarctic Research. 2024;70(2):222–237. (In Russ.). https://doi.org/10.30758/0555-2648-2024-70-2-222-237

27. Nesterova N.B., Khomutov A.V., Leibman M.O., Safonov T.A., Belova N.G. The inventory of retrogressive thaw slumps (thermocirques) in the north of West Siberia based on 2016–2018 satellite imagery mosaic. Earth’s Cryosphere. 2021;25(6):34–41. https://doi.org/10.15372/KZ20210604

28. Максимов В.В. Итоги многолетних наблюдений за термоденудацией бортов карьеров в отложениях ледового комплекса. Методы изучения криогенных физико-геологических процессов. Сб. науч. тр. М.: ВСЕГИНГЕО; 1992. С. 60–71.

29. Pizhankova E.I. Termodenudation in the coastal zone of the Lyakhovsky Islands (interpretation of aerospace images). Kriosfera Zemli = Earth’s Cryosphere. 2011;15(3):61–70. (In Russ.)

30. Kokelj S.V., Lantz T.C., Kanigan J., Smith S.L., Coutts R. Origin and polycyclic behaviour of Tundra thaw slumps, Mackenzie delta region, Northwest Territories, Canada. Permafrost and periglacial processes. 2009;20(2):173–184. https://doi.org/10.1002/ppp.642

31. Lewkowicz A.G. Nature and importance of thermokarst processes, sand hills moraine, Banks island, Canada. Geografiska Annaler: Series A, Physical Geography. 1987;69(2):321–327. https://doi.org/10.1080/04353676.1987.11880218


Review

For citations:


Tarasevich I.I., Leibman M.O., Kizyakov A.I., Nesterova N.B., Khomutov A.V. Spatial distribution and dynamics of thermocirques in a key area of Central Yamal based on remote sensing data. Arctic and Antarctic Research. 2024;70(3):391-411. (In Russ.) https://doi.org/10.30758/0555-2648-2024-70-3-391-411

Views: 448


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)