Mineral inclusions in the accretion ice above Lake Vostok
https://doi.org/10.30758/0555-2648-2024-70-4-428-443
Аннотация
Статья основана на дополнительных исследованиях минеральных включений в кернах аккреационного льда скважины 5Г на станции Восток в Центральной Антарктиде. Исследования включают рентгеновскую микротомографию двух минеральных включений с определением их минерального состава, анализ глинистых минералов в агрегате крупного включения и геохронологическое изучение зерен циркона. Рентгеновская микротомография показывает неповрежденную морфологию включений в ледяном керне и их внутреннюю текстуру. На основании анализа микрофотографий можно предположить, что обломок породы был захвачен в зоне налегания льда на мелководном участке озера Восток, расположенном выше по течению льда от станции Восток, и затем некоторое время находился в водном кармане с мелкозернистой взвесью, которая оседала на поверхности обломка. Агрегат крупного включения характеризуется преобладанием иллита (69 %), промежуточными концентрациями хлорита (24 %) и относительно небольшим количеством каолинита (7 %). Примечательным является отсутствие смешаннослоистых глинистых минералов, характерных для прибрежных районов Антарктики. Наиболее ценная информация получена из новых геохронологических данных и их интеграции с предыдущими данными датирования. U-Pb возраст детритовых зерен циркона показывает лавные пики на рубежах 900, 1000 и 1100 млн лет, в то время как возраст зерен монацита в основном сгруппирован между 1250 и 1450 млн лет с одним пиком вероятности на рубеже 1100 млн лет. Доминирующая возрастная группа зерен циркона между 900 и 1100 млн лет хорошо согласуется с главной фазой рейнерской орогении, проявленной в Восточной Антарктиде между Землей Королевы Мод и Землей Королевы Мэри, хотя подледные горы Гамбурцева можно рассматривать как более вероятный источник сноса. Зерна монацита, вероятно, отвечают ранней фазе рейнерской орогении.
Ключевые слова
Об авторах
G. L. LeitchenkovРоссия
Санкт-Петербург
N. V. Rodionov
Россия
Санкт-Петербург
A. V. Antonov
Россия
Санкт-Петербург
V. V. Krupskaya
Россия
Москва
L. Y. Kryuchkova
Россия
Санкт-Петербург
Список литературы
1. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delague G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Ya., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999;399(6735):429–436. https://doi.org/10.1038/20859
2. Lipenkov V.Ya., Lukin V.V., Bulat S.A., Vasiliev N.I., Ekaykin A.A., Leitchenkov G.L., Masolov V.N., Popov S.V., Savatyugin L.M., Salamatin A.N., Shibaev Yu.A. Scientific outcomes of subglacial Lake Vostok studies in the IPY. In: Kotlyakov V. (ed.) Contribution of Russia to International Polar Year 2007/08. Moscow: Paulsen; 2011. P. 17–47. (In Russ.)
3. Leitchenkov G.L., Antonov A.V., Luneov P.I., Lipenkov V.Y. Geology and environments of subglacial Lake Vostok. Philosophical Transactions of the Royal Society A. 2016;374:20140302. https://doi.org/10.1098/rsta.2014.0302
4. Jouzel J., Petit J.R., Souchez R., Barkov N.I., Lipenkov V.Ya., Raynaud D., Stievenard M., Vassiliev N.I., Verbeke V., Vimeux F. More than 200 meters of lake ice above subglacial lake Vostok, Antarctica. Science. 1999;286(5447):2138–2141. http://www.jstor.org/stable/2899987
5. Vasilev N.I., Dmitriev A. N., Lipenkov V.Ya. Results of the 5G borehole drilling at Russian Antarctic station “Vostok” and researches of ice cores. Journal of Mining Institute. 2016; 2018:161–171.
6. Lipenkov V.Y., Polyakova E.V., Ekaykin A.A. Regularities of congelation ice development in subglacial Lake Vostok. Ice and Snow. 2012;4:65–77. (In Russ.). https://doi.org/10.15356/2076-6734-2012-4-65-77
7. Leichenkov G.L., Belyavsky B.V., Antonov A.V., Rodionov N.V., Sergeev S.A. First information about the geology of Central Antarctica based on study of mineral inclusions in ice cores of the Vostok station borehole. Doklady Earth Sciences. 2011;440:1207–1211. https://doi/org/10.1134/S1028334X11090054
8. Bell R.E., Studinger M., Tikku A.A., Clarke G.K.C., Gutner M.M., Meertens C. Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet. Nature. 2002;416:307–310. https://doi.org/10.1038/416307a
9. Popov S.V., Masolov V.N., Lukin V.V., Popkov A.M. Russian seismic, radar and seismological studies of subglacial Lake Vostok. Ice and Snow. 2012;4:31–38. (In Russ.). https://doi.org/10.15356/2076-6734-2012-4-31-38
10. Souchez R., Petit J-R., Jouzel J., de Angelis M., Tison J.L. Reassessing Lake Vostok’s behavior from existing and new ice core data. Earth and Planetary Science Letters. 2003;217:163–170. https://doi/org/10.1016/S0012-821X(03)00588-0
11. Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Davis L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth and Planetary Science Letters. 2002;205:195–210. https://doi.org/10.1016/S0012-821X(02)01041-5
12. Williams I.S. U-Th-Pb Geochronology by Ion Microprobe. In: McKibben M.A., Shanks III W.C., Ridley W.I. (eds) Applications of microanalytical techniques to understanding mineralizing processes. Littleton: Society of Economic Geologists; 1998. P. 1–35.
13. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology. 2004;205:115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003
14. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M, Oberli F., von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandard Newsletter. 1995;19:1–3.
15. Ludwig K.R. Userʼs Manual for Isoplot 3.75. A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication. 2012;5:1–71.
16. Ehrmann W.U., Bloemendal J., Hambrey M. J., McKelvey B., Whitehead J. Variations in the composition of the clay fraction of the Cenozoic Pagodroma Group, East Antarctica: implications for determining provenance Werner. Sedimentary Geology. 2003;16:131–152. https://doi.org/10.1016/S0037-0738(03)00069-1
17. Srivastava A.K., Khare N., Ingle P.S. Characterization of clay minerals in the sediments of Schirmacher Oasis, East Antarctica: their origin and climatological implications. Current Science. 2011;101:363–371.
18. Royston-Bishop G., Priscu J.C., Tranter M., Christner B., Siegert M.J., Lee V. Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica. Annals of Glaciology. 2005;40:145–150. https://doi.org/10.3189/172756405781813555
19. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Y. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). In: (T. Hondа ed.) Physics of ice core records. Sapporo, Japan: Hokkaido University Press; 2009. P. 167–194.
20. Ehrmann W.U., Melles M., Kuhn G., Grobe H. Significance of clay mineral assemblages in the Antarctic Ocean. Marine Geology. 1992;107(4):249–273.
21. Ehrmann W.U., Setti M., Marinoni L. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Palaeogeography, Palaeoclimatology, Palaeoecology. 2005;229(3):187–211.
22. Cox S. C., Smith Lyttle B., Elkind S., Smith Siddoway C., Morin P., Capponi G. et al. A continent-wide detailed geological map dataset of Antarctica. Scientific Data. 2023;10(1):250. https://doi.org/10.1038/s41597-023-02152-9
23. Grikurov G.E., Leychenkov G. Tectonic Map of Antarctica (Scale 1:10 M) and Explanatory Notes. Paris: Commission for Geological Map of the World (CGMW); 2023. 1 Sheet, 47 p.
24. Morrissey L.J., Payne J.L., Hand M., Clark C., Taylor R., Kirkland C.L., Kylander-Clark A. Linking the Windmill Islands, east Antarctica and the Albany–Fraser Orogen: insights from U–Pb zircon geochronology and Hf isotopes. Precambrian Research. 2017;293:131–149.
25. Mikhalsky E.V., Leitchenkov G.L. (Eds.). Geological map of Mac.Robertson Land, Princess Elizabeth Land, and Prydz Bay (East Antarctica) in scale 1:1 000 000 (Map Sheet and Explanatory Notes). St.-Petersburg: VNIIOkeangeologia; 2018. 1 Sheet, 82 p.
26. Jacobs J., Eagles G., Läufer A., Jokat W. New geophysical data from a key region in East Antarctica: Estimates for the spatial extent of the Tonian Oceanic Arc Super Terrane (TOAST). Gondwana Research. 2018;9:97–107.
27. Golynsky A.V., Ferraccioli F., Hong J.K., Golynsky D.A., von Frese R.R.B., Young D.A., Blankenship D., Holt J., Ivanov S., Kiselev A.V., Masolov V.N., Eagles G., Gohk K., Jokat W., Damaske D., Finn C., Aitken A., Bell R.E., Armadillo E., Jordan T.A. Greenbaum J.S., Bozzo E., Ganeva G., Forsberg V., Ghidella M., Galindo-Zaldivar J., Bohoyo F., Martos Y.M. Nogi Y., Quartini E., Kim H.R., Roberts J.L. New magnetic anomaly map of the Antarctic. Geophysical Research Letters. 2018;45(13):6437–6449. https://doi.org/10.1029/2018GL078153
28. Goodge J.W., Fanning C.M., Fisher C.M., Vervoort J.D. Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia. Precambrian Research. 2017;299:151–176. https://doi.org/10.1016/j.precamres.2017.07.026
29. Hietpas J., Samson S., Moecher D., Schmitt A.K. Recovering tectonic events from the sedimentary record: Detrital monazite plays in high fidelity. Geology. 2010;2:167–170. https://doi.org/10.1130/G30265.1
Рецензия
Для цитирования:
Leitchenkov G.L., Rodionov N.V., Antonov A.V., Krupskaya V.V., Kryuchkova L.Y. Mineral inclusions in the accretion ice above Lake Vostok. Проблемы Арктики и Антарктики. 2024;70(4):428-443. https://doi.org/10.30758/0555-2648-2024-70-4-428-443
For citation:
Leitchenkov G.L., Rodionov N.V., Antonov A.V., Krupskaya V.V., Kryuchkova L.Y. Mineral inclusions in the accretion ice above Lake Vostok. Arctic and Antarctic Research. 2024;70(4):428-443. https://doi.org/10.30758/0555-2648-2024-70-4-428-443