Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Alternative clean approaches to accessing subglacial Lake Vostok

https://doi.org/10.30758/0555-2648-2024-70-4-499-513

Аннотация

Озеро Восток площадью около 15500 км2 является крупнейшим подледниковым озером в Антарктиде. Задача проникновения в озеро может быть решена только путем использования экологически чистой технологии бурения, исключающей попадание в водоем современной микрофлоры и обеспечивающей сохранение жизнеспособности реликтовых организмов. К сожалению, вскрытие озера Восток, проведенное российскими исследователями в феврале 2012 г., не позволило, отобрать «чистые» пробы озерной воды, поскольку они оказались контаминированы токсичной буровой жидкостью. В статье представлены четыре потенциальных варианта вскрытия подледникового озера Восток — три типа термоигл (с нагревательным кабелем, с антифризом и с расположенной в снаряде лебедкой и вмораживаемым кабелем) и система бурения горячей водой, которые можно рассматривать как экологически чистые технологии бурения и которые могут быть использованы в холодных льдах Восточной Антарктиды. Описание включает в себя только общие идеи и краткие оценки основных параметров предлагаемых технологий и не содержит детальных концепций. Все предложенные методы имеют свои преимущества и недостатки. Окончательное решение о применимости того или иного метода вскрытия должно приниматься в результате детальных научно-исследовательских и проектных работ, включающих теоретические исследования, моделирование, лабораторные и полевые испытания на основе имеющихся возможностей финансирования и логистики.

Об авторах

P. G. Talalay
Полярный исследовательский центр, Цзилиньский университет; Китайский университет наук о земле
Китай

Чанчунь, Пекин



X. Fan
Полярный исследовательский центр, Цзилиньский университет
Китай

Чанчунь



Список литературы

1. Masolov V.N., Popov S.V., Lukin V.V., Popkov A.M. The bottom topography and subglacial Lake Vostok water body, East Antarctica. Doklady Earth Sciences. 2010;433:1092–1097.

2. Popov S.V., Masolov V.N., Lukin V.V. Lake Vostok, East Antarctica: Thickness of ice, depth of the lake, subglacial and bedrock topography. Ice and Snow. 2011;1(113):25–35. (In Russ.)

3. Doran P.T., Vincent W.F. Environmental protection and stewardship of subglacial aquatic environments. In: Antarctic subglacial aquatic environments. Siegert M.J., Kennicutt II M.C., Bindschadler R.A. (eds.). Washington, D. C.: AGU, Geophysical Monograph Series; 2011;192:149–157. https://doi.org/10.1029/2010GM000947

4. Lukin V.V., Vasiliev N.I. Technological aspects of the final phase of drilling borehole 5G and unsealing Vostok Subglacial Lake, East Antarctica. Annals of Glaciology. 2014;55(65):83–89. https://doi.org/10.3189/2014AoG65A002

5. Alekhina I., Ekaykin A., Moskvin A., Lipenkov V. Chemical characteristics of the ice cores obtained after the first unsealing of subglacial Lake Vostok. In: Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes. Siegert M.J., Jamieson S.S.R., White D.A. (eds.) London: Geological Society, Special Publications; 2017. 461(1):187–196. https//doi.org/10.1144/SP461.3

6. Talalay P.G. Mechanical ice drilling technology. Singapore: Geological Publishing House and Springer Nature Singapore Pte Ltd.; 2016. 284 p.

7. Talalay P.G. Thermal ice drilling technology. Singapore: Geological Publishing House and Springer Nature Singapore Pte Ltd.; 2020. 278 p.

8. Johnsen S.J., Hansen S.B., Sheldon S.G., Dahl-Jensen D., Steffensen J.P., Augustin L., Journé P., Alemany O., Rufli H., Schwander J., Azuma N., Motoyama H., Popp T., Talalay P., Thorsteinsson T., Wilhelms F., Zagorodnov V. The Hans Tausen drill: Design, performance, further developments and some lessons learned. Annals of Glaciology. 2007;47:89–98. https://doi.org/10.3189/172756407786857686

9. Shturmakov A.J., Lebar D.A., Mason W.P., Bentley C.R. A new 122 mm electromechanical drill for deep ice-sheet coring (DISC): 1. Design concepts. Annals of Glaciology. 2007;47:28–34. https://doi.org/10.3189/172756407786857811

10. Talalay P., Li X., Zhang N., Fan X., Sun Y., Cao P., Wang R., Yang Y., Liu Y., Liu Y., Wu W., Yang C., Hong J., Gong D., Zhang H., Li X., Chen Y., Liu A., Li Y. Antarctic subglacial drill rig. Part II: Ice and Bedrock Electromechanical Drill (IBED). Annals of Glaciology. 2021;62(84–85):12–22. https://doi.org/10.1017/aog.2020.38

11. Goodge J.W., Severinghaus J.P., Johnson J., Tosi D., Bay R. Deep ice drilling, bedrock coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica. Annals of Glaciology. 2021;62(85-86):324–339. https://doi.org/10.1017/aog.2021.13

12. Alemany O., Chappellaz J., Triest J., Calzas M., Cattani O., Chemin J.F., Desbois Q., Desbois T., Duphil R., Falourd S., Grilli R., Guillerme C., Kerstel E., Laurent B., Lefebvre E., Marrocco N., Pascual O., Piard L., Possenti P., Romanini D., Thiebaut V., Yamani R. The SUBGLACIOR drilling probe: concept and design. Annals of Glaciology. 2014;55(68):233–242. https://doi.org/10.3189/2014AoG68A026

13. Schwander J., Marending S., Stocker T.F., Fischer H. RADIX: a minimal resources rapid-access drilling system. Annals of Glaciology. 2014;55(68):34–38. https://doi.org/10.3189/2014AoG68A015

14. Schwander J., Stocker T.F., Walther R., Marending S. Progress of the RADIX (Rapid Access Drilling and Ice eXtraction) fast-access drilling system. The Cryosphere. 2023;17:151–1164. https://doi.org/10.5194/tc-17-1151-2023

15. Talalay P., Hu Z., Xu H., Yu D., Han L., Han J., Wang L. Environmental considerations of low-temperature drilling fluids. Annals of Glaciology. 2014;55(65):31–40. https://doi.org/10.3189/2014AoG65A226

16. Sheldon S.G., Popp T.J., Hansen S.B., Steffensen J.P. Promising new borehole liquids for icecore drilling on the East Antarctic high plateau. Annals of Glaciology. 2014;55(68):260–270. https://doi.org/10.3189/2014AoG68A043

17. Johnson J.A., Kuhl T., Boeckmann G., Gibson C., Jetson J., Meulemans Z., Slawny K., Souney J.M. Drilling operations for the South Pole Ice Core (SPICEcore) project. Annals of Glaciology. 2021;62(84):75–88. https://doi.org/10.1017/aog.2020.64

18. Talalay P.G. Dimethyl siloxane oils as an alternative bore-hole fluid. Annals of Glaciology. 2007;47:82–88. https://doi.org/10.3189/172756407786857785

19. Triest J., Alemany O. Drill fluid selection for the SUBGLACIOR probe: a review of silicone oil as a drill fluid. Annals of Glaciology. 2014;55(68):311–321. https://doi.org/10.3189/2014AoG68A028

20. Serbin D.V., Dmitriev A.N., Vasiliev N.I. Device for fusion drilling with simultaneous or followup reaming of wells in ice. Earth sciences and subsoil use. 2021;44(3):333–343. https://doi. org/10.21285/2686-9993-2021-44-3-333-343

21. Xu H., Han L., Cao P., Guo M., Han J., Yu D., Talalay P. Low molecular weight, fatty acid esters as potential low-temperature drilling fluids for ice coring. Annals of Glaciology. 2014;55(68):39–43. https://doi.org/10.3189/2014AoG68A003

22. Zakharov А.А. Method for drilling glacial boreholes. Patent RU2751030 C1: MPK E21B 7/00, E21B 7/14, E21B 7/18 (2006.01). Patent application No. 2020141758. Claimed 16.12.2020. Published 07.07.2021, Bull. No. 19. (In Russ.)

23. Humphrey N., Echelmeyer K. Hot-water drilling and bore-hole closure in cold ice. Journal of Glaciology. 1990;36(124):287–298. https://doi.org/10.3189/002214390793701354

24. Schuler C.G., Winebrenner D.P., Elam W., Burnett J., Boles B.W., Mikucki J.A. In situ contamination of melt probes: Implications for future subglacial microbiological sampling and icy worlds life detection missions. In: 67th Annual Meeting of the Southeastern Section of the Geological Society of America, 11 — 14 April, Knoxville, TN. Geological Society of America Abstracts. 2018;50(3):312314. https://doi.org/10.1130/abs/2018se-312314

25. Priscu J.C., Kalin J., Winans J., Campbell T., Siegfried M.R., Skidmore M., Dore J.E., Leventer A., Harwood D.M., Duling D., Zook R., Burnett J., Gibson D., Krula E., Mironov A., McManis J., Roberts G., Rosenheim B.E., Christner B.C., Kasic K., Fricker H.A., Lyons W.B., Barker J., Bowling M., Collins B., Davis C., Gagnon A., Gardner C., Gustafson C., Kim O.-S., Li W., Michaud A., Patterson M.O., Tranter M., Venturelli R., Vick-Majors T., Elsworth C., and The SALSA Science Team. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology. 2021;62(85–86):340–352. https://doi.org/10.1017/aog.2021.10

26. Tulaczyk S., Mikucki J.A., Siegfried M.R., Priscu J.C., Barcheck C.G., Beem L.H., Behar A., Burnett J., Christner B.C., Fisher A.F., Fricker H.A., Mankoff K.D., Powell R.D., Rack F., Sampson D., Scherer R.P., Schwartz S.Y., and The Wissard Science Team. WISSARD at Subglacial Lake Whillans, West Antarctica: Scientific operations and initial observation. Annals of Glaciology. 2014;55(65):51–58. https://doi.org/10.3189/2014AoG65A009

27. Zacny K., Paulsen G., Bar-Cohen Y., Bao X., Badescu M., Lee H.J., Sherrit S., Zagorodnov V., Thompson L., Talalay P. Drilling and breaking ice. In: Y. Bar-Cohen (ed.) Low temperature materials and mechanisms. Boca Raton: CRC Press; 2016. P. 271–347.

28. Classen D.F. Thermal drilling and deep ice-temperature measurements on the Fox glacier, Yukon [master thesis]. Vancouver, Canada: University of British Columbia; 1970. 65 p.

29. Suto Y., Saito S., Osada K., Takahashi H., Motoyama H., Fujii Y., Tanaka Y. Laboratory experiments and thermal calculations for the development of a next-generation glacier-ice exploration system: development of an electro-thermal drilling device. Polar Science. 2008;2(1):15–26. https//doi.org/10.1016/j.polar.2008.02.002

30. Hooke R.LeB. University of Minnesota ice drill. In: Ice-Core Drilling. Splettstoesser J.F. (ed.). Lincoln, USA: University of Nebraska Press; 1976. P. 47–57.

31. Grześ M. Non-cored hot point drills on Hans Glacier (Spitsbergen), method and first results. Polish Polar Research. 1980;1(2–3):75–85.

32. Morev V.A., Klementyev O.L., Manevskii L.N., Raikovskii V., Tolstoi A.I., Yakovlev V.M. Ice drilling on Vavilov Glacier in 1979–1985. In: Geographical and glaciological investigations in polar regions. Leningrad: Gidrometeoizdat; 1988. P. 25–32. (In Russ.)

33. McDonnell G., Russell A.D. Antiseptics and disinfectants: activity, action, and resistance. Clinical Microbiological Reviews. 1999;12(1):147–179.

34. Zagorodnov V., Thompson L.G., Kelley J.J., Koci B., Mikhalenko V. Antifreeze thermal ice core drilling: an effective approach to the acquisition of ice cores. Cold Regions Science and Technology. 1998;28:189–202. https://doi.org/10.1016/S0165-232X(98)00019-6

35. Hills B.H., Winebrenner D.P., Elam W.T., Kintner P.M.S. Avoiding slush for hot-point drilling of glacier boreholes. Annals of Glaciology. 2021;62(84):166–170. https://doi.org/10.1017/aog.2020.70

36. Industrial Solvents Handbook. 4th Ed. Flick E.W. (ed.) New Jersey, USA: Noyes Data Corporation; 1991. 930 p.

37. Talalay P., Li Y., Augustin L., Clow G.D., Hong J., Lefebvre E., Markov A., Motoyama H., Ritz C. Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica. The Cryosphere. 2020;14:4021–4037. https://doi.org/10.5194/tc-14-4021-2020

38. Talalay P.G. Deep drilling in Antarctic ice: Methods and perspectives. Earth-Science Reviews. 2023;243:104471. https://doi.org/10.1016/j.earscirev.2023.104471

39. Zotikov I.A. The Antarctic Subglacial Lake Vostok. Glaciology, biology and planetology. Chichester, UK: Praxis Publishing Ltd; 2006. 140 p.

40. Philberth K. The thermal probe deep-drilling method by EGIG in 1968 at Station Jarl-Joset, Central Greenland. In: Ice-Core Drilling. Splettstoesser J.F. (ed.). Lincoln, USA: University of Nebraska Press; 1976. P. 117–132.

41. Sun Y., Li B., Fan X., Li Y., Li G., Yu H., Li H., Wang D., Zhang N., Gong D., Wang R., Li Y., Talalay P.G. Brief communication: New sonde to unravel the mystery of polar subglacial lakes. The Cryosphere. 2022;17:1089–1095. https://doi.org/10.5194/tc-17-1089-2023

42. Sun Y., Li B., Fan X., Li Y., Li G., Yu H., Li H., Wang D., Zhang N., Gong D., Wang R., Li Y., Talalay P.G. Brief communication: New sonde to unravel the mystery of polar subglacial lakes. The Cryosphere. 2023;17:1089–1095.

43. Sun Y., Тalalay P.G., Li Y., Wang D., Li G., Xu L., Gong D., Wang J., Wang J., Wang T., Zhang N., Wang Z., Chen Y., Liu Y., Li Y., Peng S., Shi J., An C., Ge Q., Xu J., Ni X., Cui Q., Jiang Q., Sysoev M.A., Yang Y., Wang R., Wei X., Wang Y., Zhu T., Deng Z., Markov A.N., Li B., Fan X. Exploring Antarctic subglacial lakes with RECoverable Autonomous Sonde (RECAS): Design and first field tests. Science China Technological Sciences. 2024;67:1866–1878.

44. Stone W., Hogan, B., Siegel, V., Harman J., Flesher C., Clark E., Pradhan O., Gasiewski A., Howe S., Howe T. Project VALKYRIE: laser-powered cryobots and other methods for penetrating deep ice on ocean worlds. In: Badescu V., Zacny K. (eds.). Outer Solar System. Cham; Springer: 2018. P. 47–165.

45. Heinen D., Audehm J., Becker F. The TRIPLE Melting Probe — an electro-thermal drill with a forefield reconnaissance system to access subglacial lakes and oceans. In: OCEANS 2021: San Diego–Porto. SanDiego, CA, USA: 2021. P. 1–7. https://doi.org/10.23919/OCEANS44145.2021.9705999

46. TRIPLE-IceCraft expedition to Antarctica. Final System Tests and Completion of Preparations for Drilling — Part 4. DLR Blog, Space. 2023. Available at: https://www.dlr.de/blogs/en/desktopdefault.aspx/tabid-5893/9577_read-1257/ (accessed 19 March 2023).

47. Liu G., Talalay P., Wang R., Yang Y., Hong J., Gong D., Liu A., Fan D. Design parameters of hot-water drilling systems. Water. 2019;11(2):289. https://doi.org/10.3390/w11020289

48. Greenler L., Benson T., Cherwinka J., Elcheikh A., Feyzi F., Karle A., Paulos R. Modeling hole size, lifetime and fuel consumption in hot-water ice drilling. Annals of Glaciology. 2014;55(68):115–123. https://doi.org/10.3189/2014AoG68A033

49. Siegert M.J., Makinson K., Blake D., Mowlem M., Ross N. An assessment of deep hot-water drilling as a means to undertake direct measurement and sampling of Antarctic subglacial lakes: experience and lessons learned from the Lake Ellsworth field season 2012/13. Annals of Glaciology. 2014;55(65):59–73. https://doi.org/10.3189/2014AoG65A008

50. Li Y., Talalay P.G., Sysoev M.A., Zagorodnov V.S., Li X., Fan X. Thermal heads for melt drilling to subglacial lakes: Design and testing. Astrobiology. 2020;20(1):1–15. https://doi.org/10.1089/ast.2019.2103

51. Leitchenkov G., Antonov A., Luneov P., Lipenkov V. Geology and environments of subglacial Lake Vostok. Philosophical Transactions of the Royal Society A. 2016; 373: 20140303. https://doi.org/10.1098/rsta.2014.0303


Рецензия

Для цитирования:


Talalay P.G., Fan X. Alternative clean approaches to accessing subglacial Lake Vostok. Проблемы Арктики и Антарктики. 2024;70(4):499-513. https://doi.org/10.30758/0555-2648-2024-70-4-499-513

For citation:


Talalay P.G., Fan X. Alternative clean approaches to accessing subglacial Lake Vostok. Arctic and Antarctic Research. 2024;70(4):499-513. https://doi.org/10.30758/0555-2648-2024-70-4-499-513

Просмотров: 174


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)