Determining effective pressure in ice compressions based on full-scale measurements of ship motion parameters
https://doi.org/10.30758/0555-2648-2025-71-1-63-73
Abstract
Ice compressions are among navigation hazards that impede navigation in freezing waters and sometimes result in loss of ships. Recent advances in the investigation of this ice feature enable its prediction and make it possible to recommend safe navigation routes for ships, bypassing hazardous zones. The effect of ice compression on hull structures is less understood. First of all, this is because ice compression actions are difficult to determine accurately and are currently estimated by means of special visual scales (marks) drawn on the hull. This paper proposes using the parameter of effective pressure for ice compressions. Effective pressure is always present in the case of ice compression phenomena, so it could be used as an assessment criterion for the added resistance of the ship. A similar approach has been successfully applied to determine the global ice load on engineering structures. This paper suggests a method for determining the effective pressure of ice compression based on ship propulsion performance data (engine power, movement speed and propeller RPM), as well as on the measured speed of ice channel closing behind the ship. These measurements must be taken in similar ice conditions with and without ice compressions. The speed of ice channel closing behind the ship could be used to quantify ice compression intensity. Added resistance of ships is calculated using the special diagrams of ice propulsion performance made which are made for specific ships based on the results of standard model tests in hydrodynamic tanks. The paper discusses the prospects and possible limitations of this method. Effective ice compression data would be very interesting for the prediction of operational conditions of Arctic transportation systems and, possibly, for the investigation of ice sheet dynamics.
Keywords
About the Authors
K. E. SazonovRussian Federation
Kirill E. Sazonov.
St. Petersburg
A. A. Dobrodeev
Russian Federation
Aleksei A. Dobrodeev.
St. Petersburg
References
1. Опасные ледовые явления для судоходства в Арктике. Миронов Е.У. (ред.). СПб.: ГНЦ РФ ААНИИ; 2010. 320 с.
2. Li F., Kujala P., Montewka J. A ship in compressive ice: an overview and preliminary analysis. In: Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic conditions. POAC, 2019. June 9–13, 2019, Delft, The Netherlands. URL: https://www.poac.com/Papers/2019/pdf/POAC19-068.pdf (accessed: 25.12.2024).
3. Tarovik O.V. Models for forecasting parameters of ship voyages in the Arctic: existing approaches and possible development paths. Arktika: Ekologia i Ekonomika = Arctic: ecology and economics. 2021;11(3):422–435. (In Russ.). https://doi.org/10.25283/2223-4594-2021-3-422-435
4. Li F., Goerlandt F., Kujala P., Lehtiranta J., Lensu M. Evaluation of selected state-of-the-art methods for ship transit simulation in various ice conditions based on full-scale measurement. Cold Regions Science and Technology. 2018;151:94–108. https://doi.org/10.1016/j.coldregions.2018.03.008
5. Lu L., Kujala P., Toivola J., Helena J., Kuikka S. New approach to determine equivalent ice thickness for ships in dynamic compressive ice. In: Proceedings of the 27th International Conference on Port and Ocean Engineering under Arctic Conditions. 12–16 June 2023, Glasgow, United Kingdom. URL: https://www.poac.com/Papers/2023/pdf/Paper83_Lu.pdf (accessed: 25.12.2024).
6. Buzin I.V., Klyachkin S.V., Frolov S.V., Smirnov K.G., Mikhaltceva S.V., Sokolova Yu.V., Gudoshnikov Yu.P., Voinov G.N., Grigoryev M.N. Some assessments of severe ice conditions in the Pechora Sea based on observations and modeling (natural phenomenon and its impact on marine operations). Arktika: Ekologia i Ekonomika = Arctic: ecology and economics. 2022;12(4):500–512. (In Russ.). https://doi.org/10.25283/2223-4594-2022-4-500-512
7. Казаков А.Т. Безопасная дистанция и выбор оптимальной скорости при ледокольной проводке. Автореф. дис. … канд. техн. наук. Л., 1986. 24 с.
8. Сазонов К.Е. Модельный и натурный эксперимент в морской ледотехнике. СПб.: ФГУП «Крыловский государственный научный центр»; 2021. 306 с.
9. Tretyakov V.Yu., Frolov S.V., Klein A.E. Methodology for calculating the rate of channel formation in ice cover based on television images. Meteorologicheskij vestnik = Meteorological Bulletin. 2010;3(2):12–29. (In Russ.)
10. Mironov E.U., Klyachkin S.V., Smolyanitsky V.M., Yulin A.V., Frolov S.V. Current state and prospects for research of the ice cover of the seas of the Russian Arctic. Rossijskaya Arktika = Russian Arctic. 2020;10:13–29. (In Russ.). https://doi.org/10.24411/2658-4255-2020-12102
11. Assur A. Problems in ice engineering. In: Frankenstein G.E. (ed.) Proceedings of the 3rd IAHR International Symposium on ice problems, 18–21 August, 1975, Hanover, New Hempshire. Hanover, New Hampshire, USA: International Association of hydraulic Research, Committee on Ice Problems; 1975. Р. 361–372. URL: https://www.iahr.org/library/technical?pid=520 (accessed: 25.12.2024).
12. Тимохов Л.А., Хейсин Д.Е. Динамика морских льдов. Математические модели. Л.: Гидрометеоиздат; 1987. 272 с.
13. Suominen M., Kujala P. Ice model tests in compressive ice. In: Li and Lu (ed.). Proceedings of the 21st IAHR International Symposium on Ice, Ice Research for Sustainable Environment, Dalian, China, June 11–15, 2012. Dalian: Dailan University of Technology Press; 2012. P. 1046–1057. URL: https://www.iahr.org/library/infor?pid=27016 (accessed:25.12.2024).
14. Külaots R., Kujala P., von Bock und Polach R., Montewka J. Modelling of ship resistance in compressive ice channels. In: Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, June 9–13, 2013, Espoo, Finland. URL: https://www.poac.com/Papers/2013/pdf/POAC13_180.pdf (accessed: 25.12.2024).
15. La Prairie D., Wilhelmson V., Riska K. A transit simulation model for ships in Baltic ice conditions, documentation of the calculation routing. Otaniemi: Helsinki University of Technology; 1995. 38 p.
16. Каневский Г.И., Клубничкин А.М., Сазонов К.Е. Прогнозирование характеристик ходкости многовальных судов. СПб.: ФГУП «Крыловский государственный научный центр»; 2019. 160 с.
17. Kanevsky G.I., Klubnichkin A.M., Sazonov K.E. Ice performance diagrams of a vessel. Bulletin of the Admiral S.O. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova = Makarov State University of Maritime and Inland Shipping. 2022;14(6):805–814. (In Russ.). https://doi.org/10.21821/2309-5180-2022-14-6-805-814
18. Dobrodeev A.A., Sazonov K.E. Application of ice performance diagrams of ships for analysis of full-scale tests. Trudy Krylovskogo gosudarstvennogo nauchnogo centra = Proceedings of the Krylov State Research Center. 2023;3(405):81–88. (In Russ.). https://foi.org/10.24937/2542-2324-2023-3-405-81-88
19. Лосет С., Шхинек К.Н., Гудместад О., Хойланд К. Воздействие льда на морские и береговые сооружения. СПб.: Лань; 2010. 272 с.
Review
For citations:
Sazonov K.E., Dobrodeev A.A. Determining effective pressure in ice compressions based on full-scale measurements of ship motion parameters. Arctic and Antarctic Research. 2025;71(1):63-73. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-1-63-73