Space-time variability of heat content in the North European Basin based on ORAS5 reanalysis
https://doi.org/10.30758/0555-2648-2025-71-3-256-276
Abstract
The study investigates the spatiotemporal variability of heat content in the North European Basin (NEB) — the Barents, Greenland, and Norwegian Seas. The research is based on the ORAS5 (Ocean ReAnalysis System 5) reanalysis data for the period 1982–2024. The climatic vulnerability of the region, driven by Arctic amplification and the intense advection of warm Atlantic waters, necessitates a detailed investigation of heat redistribution mechanisms. The aim of the work is to quantify interannual changes, taking into account seasonal dynamics, to identify spatial patterns in the distribution of heat content trends for different layers (0–200 m, 200–300 m, 300–400 m, 400–500 m and 500–600 m) and to study the vertical distribution of heat content during the period of modern climate change. The analysis employed methods of linear regression, the coefficient of determination (R2) of the linear trend, and layer-wise averaging; the statistical significance of the trends identified was assessed using Student’s t-test. The most pronounced positive heat content trends (R2 > 0.5) are observed during the winter season in key advection zones of warm Atlantic waters: along the West Spitsbergen Current, over the Mohn Ridge, and within the Bear Island Trough. The Lofoten Basin stands out due to exceptionally high and persistent R2 values (> 0.6 down to a depth of 600 m), explained by the dominant role of mesoscale eddies in deep heat penetration processes. The analysis revealed significant vertical transformations in the thermohaline structure of the NEB waters since the 2000s: in the Fram Strait, the 1.4 °C isotherm descended from ~400 m to ~650 m; in the Boreas Basin, the 0 °C isotherm descended from ~500 m to ~650 m; over the Mohn Ridge, the layer of water warmer than 2 °C thickened from ~200 m to ~300 m. Summer months show minimal R2 values in the central basins, reflecting the strong influence of seasonal stratification and enhanced turbulent mixing processes. The combination of changes observed — weakening of vertical stratification, intensification of meridional heat transport, and the progressive deepening and eastward spread of Atlantic-origin warm waters — serves as a key indicator of the accelerating “Atlantification” process of the NEB, fundamentally altering the regional heat balance. The results obtained highlight the decisive role of complex bathymetry and sustained advection in shaping the spatial patterns of heat accumulation within the basin. The patterns identified are of significant importance for forecasting thermohaline circulation and the sea ice regime of the Arctic under climate change conditions.
Keywords
About the Authors
N. A. LisRussian Federation
Natalia А. Lis
St. Petersburg
E. A. Cherniavskaia
Russian Federation
Ekaterina А. Cherniavskaia
St. Petersburg
N. V. Lebedev
Russian Federation
Nikolai V. Lebedev
St. Petersburg
L. A. Timokhov
Russian Federation
Leonid A. Timokhov
St. Petersburg
References
1. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Edited by H.O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2019:755 p.
2. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change. 2011;77:85–96. https://doi.org/10.1016/j.gloplacha.2011.03.004
3. Alekseev G.V., Kharlanenkova N.E., Vyazilova A.E. Arctic amplification: The role of interlatitudinal exchange in the atmosphere. Izvestia, Atmospheric and Oceanic Physics. 2023;59:S103–S110. https://doi.org/10.1134/S0001433823140025
4. Latonin M.M., Bashmachnikov I.L., Bobylev L.P. The Arctic amplification phenomenon and its driving mechanisms. Fundamental and Applied Hydrophysics. 2020;13(3):3–19. https://doi.org/10.7868/S2073667320030016
5. Østerhus S., Turrell W.R., Jónsson S., Hansen B. Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophysical Research Letters. 2005;32(7):L07603. https://doi.org/10.1029/2004GL022188
6. Sando A.B., Nilsen J.E.Ø., Gao Y., Lohmann K. Importance of heat transport and local airsea heat fluxes for Barents Sea climate variability. Journal of Geophysical Research: Oceans. 2014;119(3):1970–1987. https://doi.org/10.1002/2013JC009699
7. Bashmachnikov I.L., Raj R.P., Golubkin P., Kozlov I.E. Heat Transport by Mesoscale Eddies in the Norwegian and Greenland Seas. Journal of Geophysical Research: Oceans. 2023;128:e2022JC018987. https://doi.org/10.1029/2022JC018987
8. Polyakov I.V., Pnyushkov A.V., Charette M., Cho K., Jung J., Kipp L., Muilwijk M., Whitmore L., Yang E.J., Yoo J. Atlantification advances into the Amerasian Basin of the Arctic Ocean. Science Advances. 2025;11(8):eadq7580. https://doi.org/10.1126/sciadv.adq7580
9. Lind S., Ingvaldsen R.B., Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change. 2018;8(7):634–639. https://doi.org/10.1038/s41558-018-0205-y
10. Volkov D.L., Belonenko T.V., Foux V.R. Puzzling over the dynamics of the Lofoten Basin-a subArctic hot spot of ocean variability. Geophysical Research Letters. 2013;40(4):738–743. https://doi.org/10.1002/grl.50126
11. Polyakov I.V., Ingvaldsen R.B., Pnyushkov A.V., Bhatt U.S., Francis J.A., Janout M., Kwok R., Skagseth Ø. Fluctuating Atlantic inflows modulate Arctic atlantification. Science. 2023;381(6661):972–979. https://doi.org/10.1126/science.adh5158
12. van der Swaluw E., Drijfhout S.S., Hazeleger W. Bjerknes compensation at high northern latitudes: The ocean forcing the atmosphere. Journal of Climate. 2007;20(24):6023–6032. https://doi.org/10.1175/2007JCLI1562.1
13. Latonin M.M., Bashmachnikov I.L., Bobylev L.P. Bjerknes compensation mechanism as a possible trigger of the low-frequency variability of Arctic amplification. Russian Journal of Earth Sciences. 2022; 22(6):1–21. https://doi.org/10.2205/2022ES000820
14. Latonin M.M., Bashmachnikov I.L., Semenov V.A. Enhanced wintertime convergence of atmospheric and oceanic heat transports in the Barents Sea region under present climate warming. Russian Journal of Earth Sciences. 2025;25(2):1–11. https://doi.org/10.2205/2025ES000967
15. Lebedev K.V., Popov A.P., Filushkin B.N. Using Argo observations to study interannual variability of heat exchange in polar seas with the atmosphere, Atlantic and Arctic Oceans and ice formation intensity. Oceanological Research. 2024;52(4):128–146. (In Russ.). https://doi.org/10.29006/1564-2291.JOR-2024.52(4).8
16. Iakovleva D.A., Bashmachnikov I.L., Diansky N.A. Coherence of deep convection in the Irminger Sea with oceanic heat advection. Oceanology. 2023;63(Suppl. 1):S1–S10. https://doi.org/10.1134/S0001437023070214
17. Smirnova Yu.E., Zabolotskikh E.V., Bobylev L.P., Chapron B. Statistical characteristics of polar cyclones in the seas of the North European Basin according to satellite microwave radiometers. Izvestia, Atmospheric and Oceanic Physics. 2016;52:1128–31136. https://doi.org/10.1134/S0001433816090255
18. Beszczynska-Möller A., Woodgate R.A., Lee C., Melling H., Karcher M. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography. 2012;25(3):82–99. http://www.jstor.org/stable/24861302
19. Strehl C., Fer I., Koszalka I.M. Observed changes in the Greenland Sea deep-water convection. Nature Communications. 2024;15(1):1–12. https://doi.org/10.1038/s41467-024-45670-9
20. de Steur L., Hansen E., Gerland S., Lind S., Eldevik T. Upper Ocean warming and sea ice reduction in the East Greenland Current from 2003 to 2019. Communications Earth & Environment. 2023;4(1):261. https://doi.org/10.1038/s43247-023-00913-3
21. Björk G., Gustafsson B.G., Stigebrandt A. Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content and potential energy. Polar Research. 2001;20(2):161–168. https://doi.org/10.3402/polar.v20i2.6513
22. Vakulenko N.V., Sonechkin D.M. Conductors of heat content changes in the North Atlantic Ocean layers. Oceanology. 2020;60(1):5–13. (In Russ.). https://doi.org/10.31857/S0030157420010232
23. Copernicus Climate Change Service, Climate Data Store, (2021): ORAS5 global ocean reanalysis monthly data from 1958 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.67e8eeb7 (accession date 10.04.2025)
24. Zuo H., Balmaseda M. A., Mogensen K., Tietsche S. OCEAN5: the ECMWF ocean reanalysis system and its real-time analysis component. Reading, UK: ECMWE; 2018. 44 p. https://doi.org/10.21957/la2v0442
25. Zuo H., Balmaseda M.A., Tietsche S., Mogensen K., Mayer M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean science. 2019;15(3):779–808. https://doi.org/10.5194/os-15-779-2019
26. Sumkina A.A., Kivva K.K., Ivanov V.V., Smirnov A.V. Seasonal ice removal in the Barents Sea and its dependence on heat advection by Atlantic waters. Fundamental and Applied Hydrophysics. 2022;15(1):82–97. (In Russ.). https://doi.org/10.59887/fpg/1krp-xbuk-6gpz
27. Akhtyamova A.F., Travkin V.S. Investigation of frontal zones in the Norwegian Sea. Physical Oceanography. 2023;30(1):62–77. https://doi.org/10.29039/1573-160X-2023-1-62-77
28. Volkov D.L., Kubryakov A.A., Lumpkin R. Formation and variability of the Lofoten basin vortex in a high-resolution ocean model. Deep Sea Research Part I: Oceanographic Research Papers. 2015;105:142–157. https://doi.org/10.1016/j.dsr.2015.09.001
29. Belonenko T., Zinchenko V., Gordeeva S., Raj R.P. Evaluation of heat and salt transports by mesoscale eddies in the Lofoten Basin. Russian Journal of Earth Sciences. 2020;20(6):6. https://doi.org/10.2205/2020ES000720
30. Abot L., Provost C., Poli L. Recent convection decline in the Greenland Sea: Insights from the Mercator ocean system over 2008–2020. Journal of Geophysical Research: Oceans. 2023;128(6):e2022JC019320. https://doi.org/10.1029/2022JC019320
31. Latarius K., Quadfasel D. Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: heat and freshwater budgets. Tellus A: Dynamic Meteorology and Oceanography. 2010;62(4):497–515. https://doi.org/10.1111/j.1600-0870.2010.00453.x
32. Bashmachnikov I.L., Fedorov A.M., Vesman A.V., Belonenko T.V., Koldunov A.V., Duhovskoy D.S. Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: localization of the deep convection sites. Current Problems in Remote Sensing of the Earth from Space. 2018;15(7):184–194. (In Russ.). https://doi.org/10.21046/2070-7401-2018-15-7-184-194
33. Ivanov V.V. Contemporary changes in hydrometeorological conditions in the Arctic Ocean associated with a decrease in sea ice cover. Gidrometeorologiya i Ekologiya = Journal of Hydrometeorology. 2021;64:407–434. (In Russ.). https://doi.org/10.33933/2713-3001-2021-64-407-434
Review
For citations:
Lis N.A., Cherniavskaia E.A., Lebedev N.V., Timokhov L.A. Space-time variability of heat content in the North European Basin based on ORAS5 reanalysis. Arctic and Antarctic Research. 2025;71(3):256-276. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-3-256-276