Study of thunderstorm formation conditions at the research station “Ice Base Cape Baranova”
https://doi.org/10.30758/0555-2648-2025-71-3-277-290
Abstract
The paper study presents a review of synoptic conditions and an analysis of atmospheric radiosonde data collected at the “Ice Base Cape Baranova” research station, operated by the Federal State Budgetary Institution “AARI”. The station is located on the coast of the Shokal’sky Strait at the northern tip of Bolshevik Island (Severnaya Zemlya archipelago). The analysis includes four cases of thunderstorm activity: one case in June 2019, two cases in June 2020 and one case in July 2022. Notably, the first recorded thunderstorm at the station occurred on June 20, 2019. The analysis focused on morning radiosonde data (00:00 UTC) and aimed to construct and evaluate aerological diagrams and calculate various instability indices, including the Boyden Index, K-index, Vertical Totals, Cross Totals and Total Totals. The findings reveal diverse synoptic conditions at the surface, while the upper troposphere consistently exhibited the influence of baric trough from the southwest and height ridges from the southeast. In all the cases analyzed, a temperature inversion was observed in the surface layer, typically indicating stable atmospheric stratification. However, the actual occurrence of thunderstorms suggests alternative factors, such as orographic influences and warm air advection, may give rise to these convective processes.
Although the calculated instability indices generally remained below established thresholds, indicating a low probability of thunderstorms, thunderstorm events were nevertheless recorded. This discrepancy highlights the need to adapt existing criteria for predicting thunderstorm activity in the High Arctic. This study underscores the importance of further research to enhance understanding of atmospheric dynamics in Polar Regions and improve predictive models for convective weather phenomena.
About the Authors
L. A. StartsevRussian Federation
Leonid A. Startsev
St. Petersburg
I. A. Ilyushchenkova
Russian Federation
Irina A. Ilyushchenkova
St. Petersburg
M. A. Yezhikova
Russian Federation
Marina A. Yezhikova
St. Petersburg
References
1. Третий оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Общее резюме. СПб.: Наукоемкие технологии; 2022. 124 с.
2. Latonin M.M., Bashmachnikov I.L., Bobylev L.P. The Arctic amplification phenomenon and its driving mechanisms. Fundamentalnaya i Prikladnaya Gidrofizika = Fundamental and Applied Hydrophysics. 2020;13(3):3–19. (In Russ). https://doi.org/10.7868/S2073667320030016
3. Saha J., Price C., Plotnik T., Guha A. Are thunderstorms linked to the rapid sea ice loss in theArctic? Atmospheric Research. 2023;294:106988. https://doi.org/10.1016/j.atmosres.2023.106988
4. Holzworth R.H., Brundell J.B., McCarthy M.P., Jacobson A.R., Rodger C.J., Anderson T.S. Lightning in the Arctic. Geophysical Research Letters. 2021;48(7):e2020GL091366. https://doi.org/10.1029/2020GL091366
5. Chen Y., Romps D.M., Seeley J.T., Veraverbeke S., Riley W.J., Mekonnen Z.A., Randerson J.T. Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change. 2021;11(5):404–410. https://doi.org/10.1038/s41558-021-01011-y
6. Kępski D., Kubicki M. Thunderstorm activity at high latitudes observed at manned WMO weather stations. International Journal of Climatology. 2022;42(15):1–23. https://doi.org/10.1002/joc.7678
7. Xu D., Ren B., Lu G., Huang H., Zheng J., Kou L. A rare elevated thunderstorm crossing over the North Pole associated with an Arctic warming event. Advances in Atmospheric Sciences. 2025:42:1179–1194. https://doi.org/10.1007/s00376-024-4141-7
8. Williams E.R. Lightning and climate: A review. Atmospheric Research. 2005;76(1–4):272–287. https://doi.org/10.1016/j.atmosres.2004.11.014
9. Price C. Lightning applications in weather and climate research. Surveys in Geophysics. 2013;34:755–767. https://doi.org/10.1007/s10712-012-9218-7
10. Finney D.L., Doherty R.M., Wild O., Stevenson D.S., MacKenzie I.A., Blyth A.M. A projected decrease in lightning under climate change. Nature Climate Change. 2018;8(3):210–213. https://doi.org/10.1038/s41558-018-0072-6
11. Mills B., Unrau D., Pentelow L., Spring K. Assessment of lightning-related damage and disruption in Canada. Natural Hazards. 2010;52(2):481–499. https://doi.org/10.1007/s11069-009-9391-2
12. Boyden C. A simple instability index for use as a synoptic parameter. Meteorol. Mag. 1963;92:198–210.
13. George J.J. Weather Forecasting for Aeronautics. New York, London: Academic Press; 1960. 684 p.
14. Miller R.C. Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central. Technical Report. AWS, USAF, Scott AFB, IL; 1975.
15. Kryukova S.V., Simakina T.E. Analysis of temperature inversions in St. Petersburg. Ucheniye zapiski RGGMU = Scientific notes of RSHU. 2015;40:150–159. (In Russ).
16. Danilova N.E., Kulygina L.M., Semenova Yu.A., Zakinyan R.G. Study of the parameters atmospheric boundary layer in the development of cloud convection. Nauka. Innovacii. Texnologii = Science. Innovations. Technologies. 2017;2:109–118. (In Russ.).
17. Czernecki B., Taszarek M., Kolendowicz L., Szyga-Pluta K. Atmospheric conditions of thunderstorms in the European part of the Arctic derived from sounding and reanalysis data. Atmospheric Research. 2015;154:60–72. https://doi.org/10.1016/j.atmosres.2014.11.001
18. Brown D.M., Kochtubajda B., Said R.K. A severe thunderstorm outbreak north of 70°N over the Canadian Arctic Islands with unusual lightning characteristics. Atmosphere-Ocean. 2020;58(4):231–242. https://doi.org/10.1080/07055900.2020.1792405
19. Gorbatenko V.P., Krechetova S.Yu., Belikova M.Yu., Nechepurenko O.E. The comparison of atmospheric instability indices retrieved from the data of radio sounding and MODIS spectroradiometer on thunderstorm days over West Siberia. Russ. Meteorol. Hydrol. 2015;40(5):289–295. https://doi.org/10.3103/S1068373915050015
20. Popykina A., Ilin N., Shatalina M., Price C., Sarafanov F., Terentev A., Kurkin A. Thunderstorms near the North Pole. Atmosphere. 2024;15(3):310. https://doi.org/10.3390/atmos15030310
21. Soroka J., Bania M. Burze w Hornsundzie (SW Spitsbergen). Problemy Klimatologii Polarnej. 2013;23:137–146. (In Polish).
22. Nechepurenko O.E., Gorbatenko V.P., Konstantinova D.A., Sevastyanov V.V. Instability indices and their thresholds for the forecast of thunderstorms over Siberia. Hydrometeorological research and forecasts. 2018;2(368):44–59. (In Russ.).
Review
For citations:
Startsev L.A., Ilyushchenkova I.A., Yezhikova M.A. Study of thunderstorm formation conditions at the research station “Ice Base Cape Baranova”. Arctic and Antarctic Research. 2025;71(3):277-290. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-3-277-290