Geoengineering interventions in the Antarctic ice sheet: A potential solution to the effects of global warming, or a scientific utopia?
https://doi.org/10.30758/0555-2648-2025-71-3-334-345
Аннотация
One of the main causes of sea-level rise is the melting of ice and, above all, the Antarctic ice sheet. Over the past three decades, the loss of ice sheet mass has more than tripled. Some researchers propose reducing ice melting through large-scale geoengineering interventions that change the processes of heat transfer in coastal oceanic waters and the parameters of the ice sheet, or slow down the flow and change the basal hydrology of ice shelves and ice streams. Methods of solar geoengineering have also been proposed to control the amount of solar radiation reaching the Earth’s atmosphere and reduce the surface temperature of the ice sheet. Despite some progress made towards the theoretical and technological validation of these interventions, there are fundamental problems with their technical feasibility, uncertainty and high risks. The potential environmental consequences of geoengineering interventions are extraordinary. At present, our understanding of glacier geoengineering is not sufficiently advanced to support the deployment and implementation of glacial geoengineering technologies.
Ключевые слова
Об авторах
P. G. TalalayКитай
Pavel G. Talalay
Changchun, Beijing
М. А. Sysoev
Китай
Mikhail A. Sysoev
Changchun
Список литературы
1. Fox-Kemper B., Hewitt H.T., Xiao C., Aðalgeirsdóttir G., Drijfhout S.S., Edwards T.L., Golledge N.R., Hemer M., Kopp R.E., Krinner G., Mix A., Notz D., Nowicki S., Nurhati I.S., Ruiz L., Sallée J.-B., Slangen A.B.A., Yu Y. Ocean, Cryosphere and Sea Level Change. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds.)). Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2021. P. 1211–1362. https://doi/org/10.1017/9781009157896.011
2. Clem K.R., Fogt R.L., Turner J., Lintner B.R., Marshall G.J., Miller J.R., Renwick J.A. Record warming at the South Pole during the past three decades. Nature Climate Change. 2020;10:762– 770. https://doi.org/10.1038/s41558-020-0815-z
3. Bulthuis K., Arnst M., Sun S., Pattyn F. Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. The Cryosphere. 2019;13(4):1349–1380. https://doi.org/10.5194/tc-13-1349-2019
4. Lowry D.P., Krapp M., Golledge N.R., Alevropoulos-Borril A. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Communications Earth and Environment. 2021;2(1):221. https://doi.org/10.1038/s43247-021-00289-2
5. Pritchard H.D., Ligtenberg S.R.M., Fricker H.A., Vaughan D.G., van den Broeke M.R., Padman L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature. 2012;484:502–505. https://doi.org/10.1038/nature10968
6. Graham A.G.C., Wåhlin A., Hogan K.A., Nitsche F.O., Heywood K.J., Totten R.L., Smith J.A., Hillenbrand C.-D., Simkins L.M., Anderson J.B., Wellner J.S., Larter R.D. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nature Geosciences. 2022;15:706–713. https://doi.org/10.1038/s41561-022-01019-9
7. Witze A. Giant cracks push imperilled Antarctic glacier closer to collapse. Nature. News: 14 December 2021. https://doi.org/10.1038/d41586-021-03758-y
8. Mackintosh A. Thwaites Glacier and the bed beneath. Nature Geosciences. 2022;15:687–688. https://doi.org/10.1038/s41561-022-01020-2
9. Smith B., Fricker H.A., Gardner A.S. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science. 2020;368:1239–1242. https://doi.org/10.1126/science.aaz5845
10. Moore J.C., Gladstone R., Zwinger T., Wolovick M. Geoengineer polar glaciers to slow sea-level rise. Nature. 2018;555:303–305. https://doi.org/10.1038/d41586-018-03036-4
11. Mishchenko E.F., Mishchenko A.S., Zelikin M.I. Adequacy of mathematical models in control theory, physics and ecology. Mathematical education. 2019;4(92):2–16. (In Russ.).
12. Tollefson J. Can artificially altered clouds save the Great Barrier Reef? Nature. 2021;596:476–478. https://doi.org/10.1038/d41586-021-02290-3
13. Richter H. Scientists at odds over wild plans to slow melting glaciers. Science. 2024;385(6706):244. https://doi.org/10.1126/science.adr8012
14. Wolovick M.J., Moore J.C. Stopping the flood: could we use targeted geoengineering to mitigate sea level rise? The Cryosphere. 2018;12:2955–2967. https://doi.org/10.5194/tc-12-2955-2018
15. Gurses O., Kolatschek V., Wang Q., Rodehacke C.B. Brief communication: a submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves. The Cryosphere. 2019;13(9):2317e2324. https://doi.org/10.5194/tc-13-2317-2019
16. Wolovick M., Moore J., Keefer B. The potential for stabilizing Amundsen Sea glaciers via underwater curtains. PNAS Nexus. 2023;2(4):pgad103. https://doi.org/10.1093/pnasnexus/pgad103
17. Keefer B., Wolovick M., Moore J.C. Feasibility of ice sheet conservation using seabed anchored curtains. PNAS Nexus. 2023;2(3):pgad053. https://doi.org/10.1093/pnasnexus/pgad053
18. MacAyeal D.R., Mankoff K., Minchew B., Moore J., Wolovick M. Glacial Climate Intervention: A Research Vision. U.S. Antarctic Program (USAP) Data Center; 2024. https://doi.org/10.15784/601797
19. Lockley A., Wolovick M., Keefer B., Gladstone R., Zhao L.-Y., Moore J.C. Glacier geoengineering to address sea-level rise: A geotechnical approach. Advances in Climate Change Research. 2020;11:401e414. https://doi.org/10.1016/j.accre.2020.11.008
20. Kulessa B., Jansen D., Luckman A.J., King E.C., Sammonds P.R. Marine ice regulates the future stability of a large Antarctic ice shelf. Nature Communications. 2014;5(1):3707. https://doi.org/10.1038/ncomms4707
21. Frieler K., Mengel M., Levermann A. Delaying future sea-level rise by storing water in Antarctica. Earth System Dynamics. 2016;7:203–210. https://doi.org/10.5194/esd-7-203-2016
22. Feldmann J., Levermann A., Mengel M. Stabilizing the West Antarctic ice sheet by surface mass deposition. Science Advances. 2019;5(7):eaaw4132. https://doi.org/10.1126/sciadv.aaw4132eaaw4132
23. Kotlyakov V.M. Glacier albedo. Glaciological dictionary. Leningrad: Hydrometeoizdat; 1984. P. 41–42. (In Russ.).
24. Field L., Ivanova D., Bhattacharyya S., Mlaker V., Sholtz A., Decca R., Manzara A., Johnson D., Christodoulou E., Walter P., Katuri K. Increasing Arctic Sea ice albedo using localized reversible geoengineering. Earth’s Future. 2018;6:882e901. https://doi.org/10.1029/2018EF000820
25. Bamber J.L., Vaughan D.G., Joughin I. Widespread complex flow in the interior of the Antarctic Ice Sheet. Science. 2000;287:1248–1250. https://doi.org/10.1126/science.287.5456.1248
26. Kyrke-Smith T.M., Katz R.F., Fowler A.C. Subglacial hydrology and the formation of ice streams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;470(2161):20130494. https://doi.org/10.1098/rspa.2013.0494
27. Duffey A., Irvine P., Tsamados M., Stroeve J. Solar geoengineering in the polar regions: A review. Earth’s Future. 2023;11:e2023EF003679. https://doi.org/10.1029/2023EF003679
28. Zhilina I.Yu. Geoengineering as a way to combat climate change: benefit or harm? Social and humanitarian sciences: Domestic and foreign literature. Series 2, Economics: Abstract journal. 2020;1:106–115. https://cyberleninka.ru/article/n/geoinzheneriya-kak-sposob-borby-sklimaticheskimi-izmeneniyami-polza-ili-vred (accessed 04.09.2025). (In Russian).
29. Robock A., Oman L., Stenchikov G.L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. Journal of Geophysical Research. 2008;113(D16):D16101. https://doi.org/10.1029/2008JD010050
30. Latham J., Gadian A., Fournier J., Parkes B., Wadhams P., Chen J. Marine cloud brightening: Regional applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences. 2014;372(2031):20140053. https://doi.org/10.1098/rsta.2014.0053
31. Kravitz B., MacMartin D.G., Wang H., Rasch P.J. Geoengineering as a design problem. Earth System Dynamics. 2016;7(2):469–497. https://doi.org/10.5194/esd-7-469-2016
32. Moore J.C., Yue C., Chen Y., Jevrejeva S., Visioni D., Uotila P., Zhao L. Multi‐model simulation of solar geoengineering indicates avoidable destabilization of the West Antarctic ice sheet. Earth’s Future. 2024;12:e2024EF004424. https://doi.org/10.1029/2024EF004424
33. Adhikari M., Martin D.F., Edwards T.L., Payne A.J., O’Neill J., Irvine P.J. Geoengineering’s role in reducing future Antarctic mass loss is unclear. ESS Open Archive. April 2024. https://doi.org/10.22541/essoar.171224475.59791746/v1
34. Moon T.A., Abdalati W., Bamber J.L. et al. Geoengineering is not a quick glacier fix. Nature. 2018;556:436. https://doi.org/10.1038/d41586-018-04897-5
35. Moore J.C., Mettiäinen I., Wolovick M., Zhao L., Gladstone R., Chen Y., Kirchner S., Koivurova T. Targeted geoengineering: local interventions with global implications. Global Policy. 2021;2(Supp 1):108–118. https://doi.org/10.1111/1758-5899.12867
36. Talalay P.G., Zhang N. Antarctic mineral resources: Looking to the future of the Environmental Protocol. Earth Science-Reviews. 2022;232:104142. https://doi.org/10.1016/j.earscirev.2022.104142
37. Australian Antarctic Division: Seabed (benthic) communities (12 August 2010). https://www.antarctica.gov.au/about-antarctica/animals/seabed-benthic-communities (accessed 05.08.2025).
38. Talalay P.G. Geotechnical and exploration drilling in the polar regions. Springer Cham; 2022. 387 p.
39. Siegert M., Sevetre Y., Bentley M.J., ... Truffer M. Safeguarding the polar regions from dangerous geoengineering: A critical assessment of proposed concepts and future prospects. Frontiers of Science. 2025;3:1527393. https://doi:10.3389/fsci.2025.1527393
40. UN General Assembly. Human Rights Council. Fifty-fourth session, 11 September–6 October 2023. Impact of new technologies intended for climate protection on the enjoyment of human rights. Report of the Human Rights Council Advisory Committee A/HRC/54/47. https://docs.un.org/en/A/HRC/54/47 (accessed 05.08.2025).
Рецензия
Для цитирования:
Talalay P.G., Sysoev М.А. Geoengineering interventions in the Antarctic ice sheet: A potential solution to the effects of global warming, or a scientific utopia? Проблемы Арктики и Антарктики. 2025;71(3):334-345. https://doi.org/10.30758/0555-2648-2025-71-3-334-345
For citation:
Talalay P.G., Sysoev M.A. Geoengineering interventions in the Antarctic ice sheet: A potential solution to the effects of global warming, or a scientific utopia? Arctic and Antarctic Research. 2025;71(3):334-345. https://doi.org/10.30758/0555-2648-2025-71-3-334-345