Results of forecasting hydrometeorological fields for the White Sea using the atmosphere – ocean – ice system
https://doi.org/10.30758/0555-2648-2025-71-4-378-395
Abstract
Given the active development of the Arctic with an extremely rare network of observations, there is a high demand for reliable hydrometeorological forecasts of the ice, marine and meteorological conditions in this region. For this purpose, a system has been implemented for hydrometeorological forecasting of atmospheric, ocean and sea ice circulation parameters for the White Sea region. The polar version of the WRF model was used for predicting atmospheric circulation, the ROMS model was used for predicting ocean (sea) circulation, and the parameters of the sea ice state were calculated using the CICE model. Early results of calculating hydrometeorological parameters have been obtained and an assessment of the quality of calculations has been carried out, which helped to identify the advantages and disadvantages of the system used. For the atmospheric calculations, the errors are at or below the published estimates from similar papers. The fields of sea surface temperature, surface salinity, and ocean level are in good agreement with the GOFS 3.1 analysis data and are at the level of other authors' quality assessments. Inaccuracies have been identified in the reproduction of the above characteristics at the ice /open water boundary. For the sea surface temperature, errors at the ice /open water boundary reached 0.4 °C, for salinity 0.4 ‰, for current velocity up to 0.18 m/s, and a level of 0.2 m. A comparative analysis was carried out for two schemes of parameterization of ice thermodynamics in the CICE — BL99 and Mushy models. It is shown that when both schemes are used, a systematic overestimation of the total volume of sea ice is observed. However, compared to the Mushy scheme, the simpler BL99 scheme had fewer errors.
About the Authors
N. Yu. ButakovRussian Federation
Moscow
K. G. Rubinstein
Russian Federation
Moscow
R. Yu. Ignatov
Russian Federation
Moscow
References
1. Kuznetsov M.V., Getsov A.A., Lukina S.M. Problematic issues related to overcoming the consequences of radioactive contamination in the ecosystem of the Arctic zone of the Russian Federation. Innovatsionnaya Nauka = Innovation Science. 2023;3-1:51–52. (In Russ.).
2. Tsujino H., Urakawa L.S., Griffies S.M., Danabasoglu G., Adcroft A.J., Amaral A.E., Arsouze T., Bentsen M., Bernardello R., Böning C.W., Bozec A., Chassignet E.P., Danilov S., Dussin R., Exarchou E., Fogli P.G., Fox-Kemper B., Guo C., Ilicak M., Iovino D., Kim W.M., Koldunov N., Lapin V., Li Y., Lin P., Lindsay K., Liu H., Long M.C., Komuro Y., Marsland S.J., Masina S., Nummelin A., Rieck J.K., Ruprich-Robert Y., Scheinert M., Sicardi V., Sidorenko D., Suzuki T., Tatebe H., Wang Q., Yeager S.G., Yu Z. Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP- 2). Geoscientific Model Development. 2020;13(8):3643–3708. https://doi.org/10.5194/gmd-13-3643-2020
3. Sievers I., Rasmussen T.A.S., Stenseng L. Assimilating CryoSat-2 freeboard to improve Arctic sea ice thickness estimates. The Cryosphere. 2023;17(9):3721–3738. https://doi.org/10.5194/tc-17-3721-2023
4. Product User Guide & Algorithm Specification — AWI CryoSat-2 Sea Ice Thickness v2.4. Alfred Wegener Institute (AWI); 2021. 58 p.
5. Hunke E.C., Lipscomb W.H., Turner A.K., Jeffery N., Elliott S. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1 (LA-CC-06-012). Los Alamos, NM: Los Alamos National Laboratory; 2015.
6. Madec G. and the NEMO System Team. NEMO Ocean Engine Reference Manual. Version 5.0.0. Zenodo; 2024. https://doi.org/10.5281/zenodo.1464816
7. ICESat-2 Algorithm Theoretical Basis Document for Global Geolocated Photons (ATL03), Release 005. Greenbelt, Maryland: Goddard Space Flight Center; 2021. 208 p.
8. Operation IceBridge: An airborne mission for Earth’s polar ice. NASA Goddard Space Flight Center; 2009–2020. Available at: https://icebridge.gsfc.nasa.gov/ (accessed 20.03.2025).
9. Schweiger A.J., Zhang J. Accuracy of short-term sea ice drift forecasts using a coupled iceocean model. Journal of Geophysical Research: Oceans. 2015;120(12):7827–7841. https://doi.org/10.1002/2015JC011273
10. Schweiger A., Lindsay R., Zhang J., Steele M., Stern H. Uncertainty in modeled Arctic sea ice volume. Journal of Geophysical Research: Oceans. 2011;116:C07001. https://doi.org/10.1029/2011JC007084
11. Xue J., Xiao Z., Bromwich D.H., Bai L. Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean. Frontiers of Earth Science. 2022;16:1005–1024. https://doi.org/10.1007/s11707-022-0971-8
12. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Liu Z., Berner J., Wang W., Powers J.G., Duda M.G., Barker D.M., Huang X.-Y. A description of the advanced research WRF model Version 4.1. 2019. Available at: https://doi.org/10.5065/1dfh-6p97 (accessed 20.03.2025).
13. Diansky N.A, Fomin V.V., Kabatchenko I.M., Gruzinov V.M. Simulation of circulation of the Kara and Pechora seas through the system of express diagnosis and prognosis of marine dynamics. Arctic: Ecology and Economy. 2014;1:57–73. (In Russ.).
14. Дианский Н.А., Кабатченко И.М., Фомин В.В., Панасенкова И.И., Резников М.В. Система диагноза и прогноза термогидродинамических характеристик и ветрового волнения в западных морях российской Арктики и расчет параметров экстремального шторма 1975 г. в Баренцевом море с учетом ледовых условий. Вести газовой науки. 2018;4(36):156–165.
15. Platonov V.S., Myslenkov S.A., Arkhipkin V.S., Kislov A.V. High-resolution modeling of hydrometeorological fi elds over the Kara Sea coastal regions with irregular coastline. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya = Lomonosov Geography Journal 2022;(1):87– 106. (In Russ.).
16. The WAVEWATCH III Development Group. User manual and system documentation of WAVEWATCH III version 5.16. Technical Note 329. NOAA/NWS/NCEP/MMAB: College Park, MD, USA; 2016. 326 p. Available at: https://polar.ncep.noaa.gov/waves/wavewatch/manual.v5.16.pdf (accessed 20.03.2025).
17. ADCIRC. Advanced CIRCulation Model. The University of North Carolina at Chapel Hill; 2025. Available at: https://adcirc.org/ (accessed 20.03.2025).
18. Myslenkov S., Shestakova A., Chechin D. The impact of sea waves on turbulent heat fluxes in the Barents Sea according to numerical modeling. Atmos. Chem. Phys. 2021;21:5575–5595. https:// doi.org/10.5194/acp-21-5575-2021
19. Shchepetkin A.F., McWilliams J.C. The regional oceanic modeling system (ROMS): a splitexplicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling. 2005;9(4):347–404. https://doi.org/10.1016/j.ocemod.2004.08.002
20. Kumar R., Li J., Hedstrom K., Babanin A.V., Tang Y. Intercomparison of Arctic sea ice simulation in ROMS-CICE and ROMS-Budgell. Polar Sci. 2021;29:100716. https://doi.org/10.1016/j.polar.2021.100716
21. Yang C.-Y., Liu J., Chen D. An improved regional coupled modeling system for Arctic sea ice simulation and prediction: a case study for 2018. Geosci. Model Dev. 2022;15:1155–1176. https://doi.org/10.5194/gmd-15-1155-2022
22. Wang W., Chen M., Kumar A. An assessment of the CFS real-time forecast. Weather Forecast. 2010;25:950–969. https://doi.org/10.1175/2010WAF2222345.1
23. Metzger E.J., Helber R.W., Hogan P.J., Posey P.G., Thoppil P.G., Townsend T.L., Wallcraft A.J., Smedstad O.M., Franklin D.S., Zamudo L., Phelps M. W. Global ocean forecast system 3.1 Validation test. Report No. AD1034517. Stennis Space Center, MS: Naval Research Laboratory; 2017. 112 p. Available at: https://archive.org/details/DTIC_AD1034517 (accessed 20.03.2025).
24. Morrison H., Thompson G., Tatarskii V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: comparison of one- and two-moment schemes. Mon. Wea. Rev. 2009;137:991–1007. https://doi.org/10.1175/2008MWR2556.1
25. Iacono M.J., Delamere J.S., Mlawer E.J., Shephard M.W., Clough S.A., Collins W.D. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. 2008;113:D13103. https://doi.org/10.1029/2008JD009944
26. Nakanishi M., Niino H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan. 2009;87(5):895–912. https://doi.org/10.2151/jmsj.87.895
27. Olson J.B., Kenyon J.S., Angevine W.M., Brown J.M., Pagowski M., Sušelj K. A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW. NOAA Technical Memorandum OAR GSD. 2019;61:37. https://doi.org/10.25923/n9wm-be49
28. Niu G.-Y., Yang Z.-L., Mitchell K.E., Chen F., Ek M.B., Barlage M., Kumar A., Manning K., Niyogi D., Rosero E., Tewari M., Xia Y. The community Noah land surface model with multiparameterization options (Noah–MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011;116:D12109. https://doi.org/10.1029/2010JD015139
29. Kain J.S. The Kain–Fritsch convective parameterization: an update. J. Appl. Meteor. Climatol. 2004;43:170–181. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
30. Warner J.C., Sherwood C.R., Arango H.G., Signell R.P. Performance of four turbulence closure methods implemented using a generic length scale method. Ocean Modelling. 2005;8:81–113.
31. Bitz C.M., Lipscomb W.H. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res. Oceans. 1999;104(C7):15669–15677. https://doi.org/10.1029/1999JC900100
32. Turner A.K., Hunke E.C., Bitz C.M. Two modes of sea-ice gravity drainage: a parameterization for large-scale modeling. J. Geophys. Res. Oceans. 2013;118:2279–2294. https://doi.org/10.1002/jgrc.20171
33. Jensen T., Prestopnik J., Soh H., Goodrich L., Brown B., Bullock R., Halley Gotway J., Newman K., Opatz J. The MET Version 12.0.2 User’s Guide. Developmental Testbed Center; 2025. Available at: https://github.com/dtcenter/MET/releases (accessed 12.03.2025).
34. Smith A., Lott N., Vose R. The integrated surface database: recent developments and partnerships. Bulletin of the American Meteorological Society. 2011;92(6):704–708. https://doi.org/10.1175/2011BAMS3015.1
35. Treu S., Muis S., Dangendorf S., Wahl T., Oelsmann J., Heinicke S., Frieler K., Mengel M. Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution. Earth System Science Data. 2024;16(2):1121–1136. https://doi.org/10.5194/essd-16-1121–2024
36. Muis S., Irazoqui Apecechea M., Dullaart J., de Lima Rego J., Madsen K.S., Su J., Yan K., Verlaan M. A high-resolution global dataset of extreme sea levels, tides, and storm surges, including future projections. Frontiers in Marine Science. 2020;7:263. https://doi.org/10.3389/fmars.2020.00263
37. Liu Y., Key J. R., Wang X., Tschudi M. Multidecadal Arctic sea ice thickness and volume derived from ice age. The Cryosphere. 2020;14(4):1325–1345. https://doi.org/10.5194/tc-14-1325-2020
Review
For citations:
Butakov N.Yu., Rubinstein K.G., Ignatov R.Yu. Results of forecasting hydrometeorological fields for the White Sea using the atmosphere – ocean – ice system. Arctic and Antarctic Research. 2025;71(4):378-395. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-4-378-395


























