Preview

Arctic and Antarctic Research

Advanced search

Experimental studies of medium radio wave propagation in the magnetosphere

https://doi.org/10.30758/0555-2648-2025-71-4-396-411

Abstract

The paper presents experimental studies of anomalous propagation of medium radio waves. Radio echo signals with unusually long delay times of 310–324 ms were recorded at the transmitter point of the sounding signal. The experimental results can be explained by the guiding effect, when a radio wave penetrates into a waveguide channel oriented along the Earth's magnetic field line. In this case, the radio wave propagates to the magnetic conjugated point in the southern hemisphere and returns to the transmission point traveling a distance of 93,000 km. The echo signals were recorded with the use of AARI-developed transmitting and receiving measuring equipment that has a minimum radiation power of 1 kW, while in the previous LDE observation experiments the radiation power was 5 and 17 kW. For the first time, echo signals that radiated from the Earth's surface were recorded not at a single fixed frequency, but in a frequency band of 400 kHz, from 2.100 to 2.400 kHz. The noise environment at frequencies below 2.100 kHz did not allow us to determine the lower boundary of the channel. Analysis of the background geophysical conditions was performed. It was shown that the long delayed echo (LDE) signals were observed under disturbed magnetic conditions (the planetary magnetic index Kp = 4+) in evening hours. The echo signal frequencies exceeded the critical frequencies of the ionosphere at the transmitter point and were less than the critical frequencies at the magnetically conjugate point. A distinctive feature seen from the CADI ionograms was the presence of the F3S layer, which is the main signature of the development of a subauroral polarization stream (SPS) near the station's zenith. Swarm satellite observations revealed that the Gorkovskaya observatory was located at the bottom of the main ionospheric trough (MIT), near its equatorial boundary. The projection of the plasmapause was also located at the MIT bottom, between its polar boundary and Gorkovskaya. Plausible mechanisms for the creation of a waveguide along the magnetic field line were considered. The guiding effect may find practical significance in the development of means and methods for ground-based monitoring of space weather parameters, as well as radar sounding of the near-Earth space.

About the Authors

A. S. Kalishin
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



N. F. Blagoveshchenskaya
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



T. D. Borisova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



I. M. Egorov
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



А. О. Mingaleva
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



G. A. Zagorskiy
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



References

1. Шлионский А.Г. Дальнее распространение радиоволн в ионосфере. М.: Наука; 1979. 152 с.

2. Martinez P. Long delayed echoes, a study of magnetospheric duct echoes 1997–2007. Radio Communication. 2007;83(10):60–63.

3. Blagoveshchenskii D.V. Dobrosel’skii K.A., Rumyanzev G.A., Blagoveshchenskaya N.F., Kirgetov V.D. Medium waves in space and phenomena of plasmapause. Cosmic Res. 1996;34(5): 446–453.

4. Благовещенский Д.В. Средние радиоволны в космосе. Наблюдения, модели. Saarbrücken: LAP Lambert Academic Publishing GmbH & Co; 2011. 129 p.

5. Ellis G.R, Goldstone G.T. The probability of observing ducted magnetospheric echoes from the ground. J. Geophys. Res. Space Physics. 1990;95(A5):6587–6590. https://doi.org/10.1029/JA095iA05p06587

6. Grossi M.D., Padula-Pintos V.H. Ground-based radio sounding of the Earth magnetosphere. J. Geophys. Res. 1971;76(16):3755–3763. https://doi.org/10.1029/JA076I016P03755

7. Muldrew D.B. Medium frequency conjugate echoes observed on topside-sounder data. Canad. J. Phys. 1967;45(12):3935–3941. https://doi.org/10.1139/p67-331

8. Senior A., Honary F., Chapman P.J., Rietveld M.T., Kelso T.S., Kosch M.J. High-frequency magnetospheric sounding at EISCAT: Some trials and their implications. Radio Sci. 2008;43(4):RS4009. https://doi.org/10.1029/2007RS003779

9. Vystavnoy V.M., Makarova L.N., Shirochkov A.V., EgorovaL.V. Investigations of the hightlatitude ionosphere by using data of the modern digital vertical ionosonde CADI. Heliogeophysical Research. 2013;4:1–10. (In Russ.).

10. Tsyganenko N.A. A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science. 1989;37(1):5–20.

11. Руководство по ионосферным, магнитным и гелиогеофизическим наблюдениям. Часть 1. Ионосферные наблюдения. РД 52.26.817–2023. Обнинск: ФГБУ «ВНИИГМИ-МЦД»; 2023. 199 с.

12. Kalishin, A.S., Blagoveshchenskaya, N.F., Borisova, T.D., Rogov D.D. Remote Diagnostics of effects induced by high-latitude heating facilities. Russ. Meteorol. Hydrol. 2021;46:231–240. https://doi.org/10.3103/S1068373921040038

13. Buchert S., Zangerl F., Sust M., Andre M., Eriksson A., Wahlund J.-E., Opgenoorth H. SWARM observations of equatorial electron densities and topside GPS track losses. Geophys. Res. Lett. 2015;42:2088–2092. https://doi.org/10.1002/2015GL063121

14. Ishida T., Ogawa Y., Kadokura A., Hiraki Y., Häggström I. Seasonal variation and solar activity dependence of the quiet-time ionospheric trough. J. Geophys. Res. Space Physics. 2014;119:6774–6783. https://doi.org/10.1002/2014JA019996

15. Гальперин Ю.И., Пономарев Ю.Н., Зосимова А.Г. Прямые измерения скорости дрейфа ионов в верхней ионосфере во время магнитной бури. 1. Описание прибора и измерения в магнитно-спокойное время. Космические исследования. 1973;11(2):273–282.

16. 16. Степанов А.Е., Халипов В.Л., Голиков И.А., Бондарь Е.Д. Поляризационный джет: узкие и быстрые дрейфы субавроральной ионосферной плазмы. Якутск: Издательский дом СВФУ; 2017. 128 с.

17. Stepanov A.E., Kobyakova S.E., Khalipov V.L. Fast subauroral drifts of ionospheric plasma according to data from Yakut meridional chain of stations. Solar-Terrestrial Physics. 2019;5(4):60–65. https://doi.org/10.12737/stp-54201908

18. Blagoveshchensky D.V., Maltseva O.A. Simulation of medium wave propagation in the magnetosphere. Geomagnetism and Aeronomy. 2022;62(1–2):58–65. https://doi.org/10.1134/S0016793222020049

19. Благовещенский Д.В., Жеребцов Г.А. Высокоширотные геофизические явления и прогнозирование коротковолновых радиоканалов. М.: Наука; 1987. 272 с.

20. Titheridge J.E. Plasmapause effects in the topside ionosphere. J. Geophys. Res. 1976;81(19):3227–3233. https://doi.org/10.1029/JA081i019p03227

21. Brace L.H., Theis R.F. The behavior of the plasmapause at mid-latitudes: Isis 1 Langmuir probe measurements. J. Geophys. Res. 1974;79(13):1871–1884. https://doi.org/10.1029/JA079i013p01871

22. Carpenter D.L., Anderson R.R. An ISEE whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res. 1992;97:1097–1108.

23. Angerami J.J. Whistler duct properties deduced from VLF observations made with the Ogo 3 satellite near the magnetic equator. J. Geophys. Res. 1970;6115–6135. https://doi.org/10.1029/JA075i031p06115

24. Bernhardt P.A., Park C.G. Protonospheric-ionospheric modeling of VLF ducts. J. Geophys. Res. 1977;82(32):5222–5230. https://doi.org/10.1029/ja082i032p05222

25. Borisov N.D. Zolotarev I.P. On a possibility of formation of magnetospheric ducts with local heating of the ionosphere. Geomagnetism and Aeronomy. 1983;23(5):797–803. (In Russ.).

26. Cole K.D. Formation of field-aligned irregularities in the magnetosphere. J. Atmos. Terr. Phys. 1971;33(5):741–750. https://doi.org/10.1016/0021-9169(71)90027-4

27. Khalipov V.L., Stepanov A.E., Kotova G.A., Kobyakova S.E., Bogdanov V.V., Kaisin A.B., Panchenko V.A. Vertical plasma drift velocities in the polarization jet observation by ground Doppler measurements and driftmeters on DMSP satellites. Geomagn. Aeron. 2016;56(5):535–544. https://doi.org/10.1134/S0016793216050066

28. Kotova G.A., Khalipov V.L., Stepanov A.E., Bezrukykh V.V. The Substorms Impact on Processes in the Ionosphere and Plasmasphere of the Earth. Geomagnetism and Aeronomy. 2024;64:180–188. https://doi.org/10.1134/S0016793223601023


Review

For citations:


Kalishin A.S., Blagoveshchenskaya N.F., Borisova T.D., Egorov I.M., Mingaleva А.О., Zagorskiy G.A. Experimental studies of medium radio wave propagation in the magnetosphere. Arctic and Antarctic Research. 2025;71(4):396-411. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-4-396-411

Views: 145


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)