Seasonal soil thawing processes on the Severnaya Zemlya archipelago
https://doi.org/10.30758/0555-2648-2025-71-4-412-427
Abstract
The recent warming of the Arctic causes degradation of permafrost, release of greenhouse gases due to the decomposition of previously frozen organic matter, increase in the area and diversity of vegetation, and decrease of in the bearing capacity of permafrost soils. In this regard, the evolution of the seasonally thawed soil layer is of particular interest. The paper presents the results of comprehensive studies of energy exchange processes in the atmospheric surface layer and the upper layer of permafrost, carried out in 2016–2020 at the Research Station “Ice Base Mys Baranova” (Bolshevik Island, Severnaya Zemlya Archipelago), supplemented by the results of model calculations of seasonally thawed depth (STD) dynamics. The study examines the role of surface snow albedo decreases due to short-term intrusions of warm air masses, leading to the intensification of snow melting and soil surface heating due to increase in absorbed incoming solar radiation, is analyzed. A version of the Leibenson model, validated by data of observations, is used for assessing the role of landscape factors and meteorological conditions in the dynamics of STD. Despite the simplified formulation of the problem and the approximate assignment of heat and mass transfer of soil properties in the area under study, the model results could be considered satisfactory, and proposed approach can be used for assessing the state of STD.
About the Authors
A. P. MakshtasRussian Federation
St. Petersburg
O. R. Sidorova
Russian Federation
St. Petersburg
O. R. Sidorova
Russian Federation
St. Petersburg
I. A. Makhotina
Russian Federation
St. Petersburg
References
1. Berner L.T., Massey R., Jantz P., Forbes B.C., Macias-Fauria M., Myers-Smith I., Kumpula T., Gauthier G., Andreu-Hayles L., Gaglioti B.V., Burns P., Zetterberg P., D’Arrigo R., Goetz S.J. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications. 2020;11:4621. https://doi.org/10.1038/s41467-020-18479-5
2. Serreze M.C., Walsh J.E., Chapin III F.S., Osterkamp T., Dyurgerov M., Romanovsky V., OechelW.C., Morison J., Zhang T., Barry R.G. Observational evidence of recent change in the northern highlatitude environment. Clim. Chang. 2000;46:159–207. https://doi.org/10.1023/A:1005504031923
3. Biskaborn B.K., Smith S.L., Noetzli J., Matthes H., Vieira G., Streletskiy D.A., Schoeneich P., Romanovsky V.E., Lewkowicz A.G., Abramov A., Allard M., Boike J., Cable W.L., Christiansen H.H., Delaloye R., Diekmann B., Drozdov D., Etzelmüller B., Grosse G., Guglielmin M., Ingeman-Nielsen Th., Isaksen K., Ishikawa M., Johansson M., Johannsson H., JooA., Kaverin D., Kholodov A., Konstantinov P., Kröger T., Lambiel Ch., Lanckman J.-P., Luo D., Malkova G., Meiklejohn I., Moskalenko N., Oliva M., Phillips M., Ramos M., Sannel A.B.K., Sergeev D., Seybold C., Skryabin P., Vasiliev A., Wu Q., Yoshikawa K., Zheleznyak M., Lantuit H. Permafrost is warming at a global scale. Nature Communications. 2019;10:264. https://doi.org/10.1038/s41467-018-08240-410
4. Stepanenko V.M., Repina I.A., Fedosov V.E., Zilitinkevich S.S., Lykosov V.N. Review of methods for parameterization of heat transfer in moss cover for Earth system models. Bulletin of the Russian Academy of Sciences. Atmospheric and Oceanic Physics. 2020;56(2):127–138. (In Russ.). https:// doi.org:10.1134/S0001433820020139
5. Aparin B.F., Aparin V.B., Pfeiffer E.-M. Soils and soil cover of the Bolshevik Island of the Severnaya Zemlya archipelago. Bulletin of St. Petersburg State University. 2007;3(1):104–116. (In Russ.).
6. Matveeva N.V. Vegetation of the southern part of the Bolshevik Island (Severnaya Zemlya archipelago). Vegetation of Russia. 2006;8:3–87. (In Russ.).
7. Makhotina I.A., Makshtas A.P., Timachev V.F. Processes of air — surface interaction at Bolshevik Island. In: Makshtas A.P., Sokolov V.T. (ed.) Study of the natural environment of the high-latitude Arctic on the research station “Ice Base Mys Baranova”. St. Petersburg: AARI; 2021. P. 31–38. (In Russ.).
8. Bogorodskiy P.V., Makshtas A.P., Kustov V.Yu. First results of permafrost observations at the “Ice Base Mys Baranova” (the Bolshevik Island, Severnaya Zemlya Archipelago). In: Makshtas A.P., Sokolov V.T. (ed.) Study of the natural environment of the high-latitude Arctic on the research station “Ice Base Mys Baranova”. St. Petersburg: AARI; 2021. P. 184–193. (In Russ.).
9. Кудрявцев В.А., Гарагуля Л.С., Кондратьева К.А., Меламед В.Г. Основы мерзлотного прогноза при инженерно-геологических исследованиях. М.: Наука; 1974. 431 с.
10. Лейбензон Л.С. Движение природных жидкостей и газов в пористых средах. М.: Гостехиздат; 1947. 244 с.
11. Sosnovsky A.V., Osokin N.I. The influence of moss and snow covers on the stability of permafrost in the Western Spitsbergen under climate change. Bulletin of the Kola Science Center of the Russian Academy of Sciences. 2018;3(10):178–184. (In Russ.).
12. Tishkov A.A., Osokin N.I., Sosnovsky A.V. Influence of bryophyte synusia on the arctic active soil layer. Bulletin of the Russian Academy of Sciences. Geographical Series. 2013;3:39–46. (In Russ.).
13. Makshtas A.P., Ivanov B.V., Timachev V.F. Comparison parameterizations of turbulent energymass exchange in stable-stratified atmospheric surface layer. Problemy Arktiki i Antarktiki. 2012; 3(93):5–18. (In Russ.).
14. Li J., Luo Y. Natali S., Schuur E.A.G., Xia J., Kowalczyk E., Wang Y. Modeling permafrost thaw and ecosystem carbon cycle under annual and seasonal warming at an Arctic tundra site in Alaska. J. Geophys. Res. Biogeosci. 2014;119(6):1129–1146. https:// doi.org/ 10.1002/2013JG002569
15. Chechin D.G., Repina I.A., Artamonov A.Y., Drozd I.D., Dyukarev E.A., Kazantsev V.S., Krivenok L.A., Larina A.V., Pashkin A.D., Shmonin K.N., Stepanenko V.M., Varentsov M.I. Quantifying spatial heterogeneities of surface heat budget and methane emissions over WestSiberian peatland: highlights from the Mukhrino 2022 campaign. Forests. 2024;15(1):102. https:// doi.org/10.3390/f15010102
16. Putkonen J. Soil thermal properties and heat transfer processes near Ny-Ålesund, northwestern Spitsbergen, Svalbard. Polar Research. 1998;17(2):165–179. https:// doi.org/ /10.3402/polar.v17i2.6617
17. Osterkamp T.E. A thermal history of permafrost in Alaska. In: Phillips M., Springman S.M., Arenson L.U. (ed.). Proceedings of the 8th International Conference on Permafrost. vol. 2. Brookfield: A.A. Balkema; 2003. P. 863–868.
18. Ballinger T.J., Overland J.E., Wang M., Bhatt U. S., Hanna E., Hanssen-Bauer I., Kim S.-J., Thoman R.L., Walsh J.E. Arctic Report Card: Surface air temperature. 2020. https://doi.org/10.25923/gcw8-2z06
19. Alekseev G.V., Nagurny A.P. Influence of sea ice cover on carbon dioxide concentration in the Arctic atmosphere in the winter period. Doklady Earth Sciences. 2025;401A(3):486–489.
20. Persson P.O.G. Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Climate Dynamics. 2011;39(6):1–23. https:// doi.org:10.1007/s00382-011-1196-9
21. Shestakova A.A., Chechin D.G., Lüpkes C., Hartmann J., Maturilli M. The foehn effect during easterly flow over Svalbard. Atmos. Chem. Phys. 2022;22:1529–1548. https://doi.org/10.5194/acp-22-1529-2022
22. Anisimov O.A., Kokorev V.A. Russian permafrost in the 21st century: model-based projections and analysis of uncertainties. Earth’s Cryosphere. 2017;21(2):3–9. (In Russ).
Review
For citations:
Makshtas A.P., Sidorova O.R., Sidorova O.R., Makhotina I.A. Seasonal soil thawing processes on the Severnaya Zemlya archipelago. Arctic and Antarctic Research. 2025;71(4):412-427. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-4-412-427



























