Preview

Arctic and Antarctic Research

Advanced search

Water balance of lakes opening up from the ice in the Larsemann Hills

https://doi.org/10.30758/0555-2648-2025-71-4-469-488

Abstract

The water balance method has not been widely used in the study of Antarctic oasis lakes, therefore the structure of their water balance is not determined to date. The paper is aimed at the quantitative estimation of water balance elements and identifying the features of the water balance structure for lakes with different types of level regime, using as an exampe 9 lakes of the Larsemann Hills. The raw data include field work materials of the Russian Antarctic Expedition, meteorological data from the Progress station and satellite images Landsat 8-9. The water balance calculations were carried out for December-January 2019/20 and 2021/22. The study quantitatively confirmed the predominance of meltwater inflow in the feeding of open and closed lakes, while in the incoming balance part of flowage lakes from 40 % to 70 % is occupied by channel inflow. Channel outflow predominates (more than 95 %) in the outcoming balance part of most open and flowage lakes, whereas for closed lakes evaporation from the water surface predominates. It has been established that changes in the water balance structure are caused by those in the flowage types of water bodies, which also lead to a change in the types/subtypes of the water level regime. Based on the identified quantitative relationships of water balance elements, seasonally ice-covered lakes were classified into two categories: evaporating-inflowing and runoff-inflowing lakes (according to the classification by B.B. Bogoslovskiy). The identified features of the water balance structure can be useful for the analysis of observed water level data or for hydrological calculations.

About the Authors

M. R. Kuznetsova
State Scientific Center of the Russian Federation Arctic and Antarctic Research Institute
Russian Federation

St. Petersburg



G. V. Pryakhina
Galina V. Pryakhina
Russian Federation

St. Petersburg



E. S. Zelepukina
Bonch-Bruevich Saint Petersburg State University of Telecommunications
Russian Federation

St. Petersburg



References

1. Симонов И.М. Оазисы Восточной Антарктиды. Л.: Гидрометеоиздат; 1971. 176 с.

2. Короткевич Е.С. Полярные пустыни. Л.: Гидрометеоиздат; 1972. 420 с.

3. Александров М.В. Ландшафтная структура и картирование оазисов Земли Эндерби. Л.: Гидрометеоиздат; 1985. 152 с.

4. Gibson J.A.E. The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarctic Science. 1999;11(2):175–192. https://doi.org/10.1017/S0954102099000243

5. Клоков В.Д., Веркулич С.Р. Особенности гидрологического режима водоемов оазиса Бангера. Информационный бюллетень Российской антарктической экспедиции. 1994;118:60–68.

6. Fedorova I.V., Anisimov M.A., Savatyugin L.M., Azarova N.S. Changes in the hydrographic network of the Schirmacher oasis (East Antarctica) under deglaciation. Led i Sneg = Ice and Snow. 2010;111(3):63–69. (In Russ.).

7. Sharov A.N., Tolstikov A.V. Ecological problems of the lakes of East Antarctica. Regionalnaya Ecologia. 2018;53(3):5–14. (In Russ.). https:// doi.org:10.30694/1026-5600-2018-3-5-14

8. Dugan H.A. Geophysics, Water Balance, and History of Thick Perennial Ice Covers on Antarctic Lakes. Chicago: University of Illinois at Chicago; 2014. 109 p.

9. Shevnina E., Vihma T., Potes M., Naakka T. Summertime evaporation over two lakes in the Schirmacher oasis, East Antarctica. EGUsphere [preprint]. 2025. https://doi.org/10.5194/egusphere-2025-1964

10. Faucher B., Lacelle D., Marsh N.B., Jasperse L., Clark I.D., Andersen D.T. Glacial lake outburst floods enhance benthic microbial productivity in perennially ice-covered Lake Untersee (East Antarctica). Communications Earth & Environment. 2021;211(2):12. https://doi.org/10.1038/s43247-021-00280-x

11. Shevnina E., Kourzeneva E. Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A: Dynamic Meteorology and Oceanography. 2017;69(1):1–24. https://doi.org/10.1080/16000870.2017.1317202

12. Shevnina E., Kourzeneva E., Nuruzzama M. Water balance and thermal regime of lakes in Antarctic oases. In: Kanao M., Toyokuni G., Yamamoto M. yuki (eds.). Antarctica a key to global change. IntechOpen; 2018. Available at: http://dx.doi.org/10.5772/intechopen.75265 (accessed 20.08 2025).

13. Dhote P.R., Thakur P.K., Shevnina E., Kaushik S., Verma A., Ray Y., Aggarwal S.P. Meteorological parameters and water balance components of Priyadarshini Lake at the Schirmacher Oasis, East Antarctica. Polar Science. 2021;100763(30):1–10. https://doi.org/10.1016/j.polar.2021.100763

14. Matsumoto G.I. Environmental geochemical and biological features of Antarctic oases. Memoirs of National Institute of Polar Research. Special Issue. 1998;52:230–250.

15. Cross J.M., Fountain A.G., Hoffman M.J., Obryk M.K. Physical controls on the hydrology of perennially ice-covered lakes, Taylor Valley, Antarctica (1996–2013). Journal of Geophysical Research: Earth Surface. 2022;127:1–20. https://doi.org/10.1029/2022JF006833

16. Gillieson D., Burgess J., Spate A., Cochrane A. An atlas of the lakes of the Larsemann Hills, Princess Elizabeth Land, Antarctica. ANARE Research Notes 74. Antarctic Division, Dept. of the Arts, Sport, the Environment, Tourism and Territories: Kingston, Tasmania; 1990. 173 p.

17. Kuznetsova M.R., Priakhina G.V., Grigoreva S.D., Kiniabaeva E.R. Formation factors of surface inflow to antarctic lakes of the Larsemann Hills oasis. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research. 2021;67(3):293–309. (In Russ.). https://doi.org/10.30758/0555-2648-2021-67-3-293-309

18. Grigoreva S.D., Kuznetsova M.R., Kiniabaeva E.R. New data on Progress Lake (Larsemann Hills, East Antarctica): Recently discovered subglacial part of the basin. Polar Science. 2023;100925(38):1–8. https://doi.org/10.1016/j.polar.2023.100925

19. Pryakhina G.V., Boronina A.S., Popov S.V., Chetverova A.A. Hydrological studies of lake outbursts in the Antarctic oases. Russian Meteorology and Hydrology. 2020;45(2):118–123.

20. Kazakov N.A., Gensiorovskii Iu.V. Zhiruev S.P. Snow lithostratigraphic complexes. Kriosfera Zemli = Earth’s Cryosphere. 2018;22(1):72–93. (In Russ.). https://doi.org/10.21782/KZ1560-7496-2018-1(72-93)

21. Кузьмин П.П. Процессы стаивания снежного покрова. Л.: Гидрометеоиздат; 1961. 345 с.

22. Rohrer M.B., Braun L.N. Long-term records of snow cover water equivalent in the Swiss Alps. Nordic Hydrology. 1994;25:65–78.

23. Красс М.С., Мерзликин В.Г. Радиационная теплофизика снега и льда. Л.: Гидрометеоиздат; 1990. 264 с.

24. Хромов С. П., Петросянц М. А. Метеорология и климатология. М.: Изд-во МГУ; 2006. 582 с.

25. Заварина М.В. Расчетные скорости ветра на высотах нижнего слоя атмосферы. Л.: Гидрометеоиздат; 1971. 162 с.

26. Георгиевский В.Ю. (ред.) Водный баланс озера Ханка и его изменения под влиянием природных и антропогенных факторов. СПб.: Государственный гидрологический институт; 2022. 272 с.

27. Богословский Б.Б. Озероведение. М.: Изд-во МГУ; 1960. 332 с.


Review

For citations:


Kuznetsova M.R., Pryakhina G.V., Zelepukina E.S. Water balance of lakes opening up from the ice in the Larsemann Hills. Arctic and Antarctic Research. 2025;71(4):469-488. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-4-469-488

Views: 140


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)