On the global sea level change during the Late Quaternary
https://doi.org/10.30758/0555-2648-2025-71-4-489-499
Abstract
The study is aimed at identifying the most general patterns of changes in the average global sea level in the Late Quaternary (the last 800 thousand years). The factual material used included recently published most detailed and reliable stacked series of the Global Sea Level (GSL) and Global Mean Surface Temperature (GMST) for the given time interval. On the scale of a 100-ka cycle, a simple linear relationship is observed between the two parameters (lower temperature – lower sea level), but upon closer examination, unusual features are revealed: 1) sea level maxima and minima are delayed relative to temperature maxima and minima by 4.7 ± 1.1 and 7.8 ± 2.1 thousand years, respectively; 2) ocean low stands are observed at approximately the same GMST anomalies (–4.7 ± 0.2 °C relative to the pre-industrial), while there is no correlation with the sea level value itself. The situation with the ocean high stands is similar. According to our hypothesis, the apparent delay in the sea level is explained by the fact that the maximum (minimum) ocean levels are not related to temperature per se, but to the accumulated sum of positive (negative) temperature anomalies over the previous warm (cold) period. In other words, the sea level series is a function of the integral-difference curve (IDC) of temperature. To illustrate this hypothesis, we have constructed a temperature IDC for the time interval between 460 and 360 thousand years ago, which satisfactorily explains the main trends in sea level change during marine isotope stages 12 and 11.
About the Authors
A. A. EkaykinRussian Federation
Institute of Geography RAS
Moscow
N. D. Dyatlova
Russian Federation
Moscow
References
1. Fricker H.A., Galton-Fenzi B.K., Walker C.C., Freer B.I.D., Padman L., DeConto R. Antarctica in 2025: Drivers of deep uncertainty in projected ice loss. Science. 2025;387: 601–609. https:// doi.org/10.1126/science.adt9619
2. IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2021. P. 3−32. https://doi.org/10.1017/9781009157896.001
3. Iizuka M., Seki O., Wilson D.J., Suganuma Y., Horikawa K., Van de Flierdt T., Ikehara M., Itaki T., Irino T., Yamamoto M., Hirabayashi M., Matsuzaki H., Sugisaki S. Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial. Nature Communications. 2023;14(2129):1–10. https://doi.org/10.1038/s41467-023-37325-y
4. Noble T.L., Rohling E.J., Aitken A.R.A., Bostock H.C., Chase Z., Gomez N., Jong L.M., King M.A., Mackintosh A.N., McCormack F.S., McKay R.M., Menviel L., Phipps S.J., Weber M.E., Fogwill C.J., Gayen B., Golledge N.R., Gwyther D.E., Hogg A.M., Martos Y.M., Pena-Molino B., Roberts J., Van de Flierdt T., Williams T. The sensitivity of the Antarctic Ice Sheet to a changing climate: past, present, and future. Reviews of Geophysics. 2020;58:e2019RG000663. https://doi.org/10.1029/2019RG000663
5. Hoefs J. Stable Isotope Geochemistry. Berlin: Springer; 2004. 244 p.
6. Ramstein G., Landais A., Bouttes N., Sepulchre P., Govin A. (eds.) Paleoclimatology. Springer Int. Publ.; 2021. 478 p. https://doi.org/10.1007/978-3-030-24982-3
7. Westerhold T., Marwan N., Drury A.J., Liebrand D., Agnini C., Anagnostou E., Barnet J.S.K., Bohaty S.M., Vleeschouwer D.D., Florindo F., Frederichs T., Hodell D.A., Holbourn A.E., Kroon D., Lauretano V., Littler K., Lourens L.J., Lyle M., Pälike H., Röhl U., Tian J., Wilkens R.H., Wilson P.A., Zachos J.C. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science. 2020;369:1383–1387. https://doi.org/10.1126/science.aba6853
8. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography. 2005;20:PA1003. https://doi.org/10.1029/2004PA001071
9. Spratt R.M., Lisiecki L.E. A Late Pleistocene sea level stack. Clim. Past. 2016;12:1079–1092. https://doi.org/10.5194/cp-12-1079-2016
10. Clark P.U., Shakun J.D., Rosenthal Y., Köhler P., Bartlein P.J. Global and regional temperature change over the past 4.5 million years. Science. 2024;383:884–890. https://doi.org/10.1126/science.adi1908
11. Clark P.U., Shakun J.D., Rosenthal Y., Pollard D., Hostetler S.W., Köhler P., Bartlein P.J., Gregory J.M., Zhu C., Schrag D.P., Liu Z., Pislas N.G. Global mean sea level over the past 4.5 million years. Science. 2025;390:1–10. https://doi.org/10.1126/science.adv8389
Review
For citations:
Ekaykin A.A., Dyatlova N.D. On the global sea level change during the Late Quaternary. Arctic and Antarctic Research. 2025;71(4):489-499. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-4-489-499



























