Preview

Arctic and Antarctic Research

Advanced search

Hydrobiocenoses of a small arctic lake under urbanization conditions

https://doi.org/10.30758/0555-2648-2025-71-2-201-214

Abstract

The problem of conservation and study of small urbanized water bodies in the Arctic regions of Russia is quite acute, given their economic, biological and recreational significance. The article is devoted to the study of the hydrobiological features of Lake Kontokki, on the eastern coast of which the single-industry town of Kostomuksha (northern Karelia) is located, the main industrial enterprise of which, the Kostomuksha Mining and Processing Plant, makes a significant contribution to the economic development of the Republic of Karelia and north-west Russia. To solve the problem, a study of the current state of zooplankton communities, macrozoobenthos and ichthyofauna of the reservoir was conducted in 2024. The main dynamic factors affecting the ecosystem of the reservoir are associated with population growth and expanding urban infrastructure. These include increasing recreational load, as well as an increase in municipal, storm water runoff and melt water from the city. The object of the study is a small urban reservoir located within the Arctic zone of Russia. To achieve the goal, comprehensive hydrobiological studies were conducted using generally accepted laboratory techniques. The quantitative characteristics and species composition of the planktofauna, benthofauna and ichthyofauna of the reservoir under modern conditions were determined. Features of the development of the plankton fauna and macrozoobenthos of Lake Kontokki are primarily due to the geographical location of the object, its hydrological features, and the influence of anthropogenic factors. According to the level of quantitative development of zooplankton and macrozoobenthos, Lake Kontokki is characterized as an oligotrophic reservoir. The zooplankton biomass fluctuates within 0.6–0.8 g/m3, benthos 0.6–2.0 g/m2. The zooplankton community is formed by representatives of two dominant groups (rotifers, crustaceans), which in equal shares form the species richness (44 taxa). A significant number of oligochaetes and chironomid larvae tolerant to habitat conditions were found in the lake sediments. More than 70 % of the macroinvertebrate taxa in the benthos are represented by insect larvae (Ephemeroptera, Diptera, Trichoptera). According to the species composition of the ichthyofauna (8 species), the lake belongs to the water bodies of the first fishery category. The results obtained can provide additional information for complex environmental monitoring of urbanized water bodies in the northern regions of the taiga zone.

About the Authors

E. S. Savosin
Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



Y. A. Kuchko
Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



D. S. Savosin
Institute of Biology, Karelian Scientific Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



References

1. Kravchenko A.V., Gnatyuk E.P., Kryshen A.M. Main trends in the formation of flora of a young taiga town (using the town of Kostomuksha, Republic of Karelia as an example). Transactions of the Karelian Scientific Center of the Russian Academy of Sciences. 2003;4:59–74. (In Russ.).

2. Roberts K.E., Lamoureux S.F., Kyser K., Muir D.C.G., Lafrenière M.J., Iqaluk D., Pieńkowski A.J., Normandeau A. Climate and permafrost effects on the chemistry and ecosystems of high Arctic Lakes. Scientific Reports. 2017;7:13292. https://doi.org/10.1038/s41598-017-13658-9

3. Meltofte H. (Ed.) Arctic biodiversity assessment, status and trends in Arctic biodiversity. Iceland: Conservation of Arctic Flora and Fauna; 2013. 128 p.

4. Яковлев В.А. Пресноводный зообентос Северной Фенноскандии (разнообразие и антропогенная динамика). Апатиты: КНЦ РАН; 2005. Ч. 1. 161 с.

5. Kashulin N.A., Dauvalter V.A., Skuf’ina T.P., Kotelnikov V.A. Sustainable water use in the Arctic. New approaches and solutions. Arctic: ecology and economy. 2018;4(32):15–29. (In Russ.). https://doi.org/10.25283/2223-4594-2018-4-15-29

6. Moiseenko T.I., Gashkina N.A., Dinu M.I. Distribution of metal forms and assessment of their bioavailability in land waters of the Arctic region (proposals for water quality standards). Geochemistry. 2021;66:630–645. (In Russ.). https://doi.org/10.31857/S0016752521070050

7. Алимов А.Ф., Иванова М.Б. (ред.) Закономерности гидробиологического режима водоемов разного типа. М.: Научный мир; 2004. 296 с.

8. Persson J. Urban lakes and ponds. In: Bengtsson L., Herschy R.W., Fairbridge R.W. (Eds.). Encyclopedia of lakes and reservoirs. Encyclopedia of Earth sciences series. Dordrecht: Springer; 2012. Р. 836–839.

9. Mecray E.L., King J.W., Appleby P.G., Hunt A.S. Historical trace metal accumulation in the sediments of an urbanized region of the Lake Champlain watershed, Burlington, Vermont. Water, Air, and Soil Pollution. 2001;125:201–230. https://doi.org/10.1023/A:1005224425075

10. Zhu Y.Z., He T.R., Gao Z., Guo Y.N. Distribution of heavy metals in sediment and its impact on zoobenthos community of Lake Caohai in Guizhou. China Environmental Science. 2016;36(6):1859–1866.

11. Akhmedova G.A., Rasulova M.M. The condition of small lakes in urban landscapes and their protection in conditions of anthropogenic load (by the example of the lakes Ak-Gel and Bolshoe Turali). South of Russia: ecology, development. 2009;4(4):157–161. (In Russ.). https://doi.org/10.18470/1992-1098-2009-4-157-161

12. Romashkova Yu.A. Small lakes of urbanized areas of Tolyatti: taxonomic composition, structure of bottom communities. Samarskaya Luka: Problems of regional and global ecology. 2015;24(4):32 47. (In Russ.). https://doi.org/10.18470/1992-1098-2015-4-32-47.

13. Беляков В.П., Бажора А.И., Сотников И.В. Мониторинг экологического состояния городских водоемов Санкт-Петербурга по показателям зообентоса. Известия Самарского научного центра РАН. 2015;17(6):51–56.

14. Yurkevich N.V., Eltsov I.N., Gureev V.N., Mazov N.A., Yurkevich N.V., Edelev A.V. Man-made impact on the environment in the Russian Arctic on the example of the Norilsk industrial region. Bulletin of Tomsk Polytechnic University. Georesources Engineering. 2021;332(12):230–249. (In Russ.).

15. Sokolov Yu.I. Arctic: on the problem of accumulated environmental damage. Arctic: ecology and economics. 2013;2(10):18–27. (In Russ.).

16. Lukman L. Anthropogenic impact on Lake ecosystem In: Assani A. (ed.) Science of lakes — multidisciplinary approach. [Internet]. Environmental Sciences. IntechOpen; 2024. Available at: http://dx.doi.org/10.5772/intechopen.112179 (accessed 26.05.2025).

17. Shishelova T.I., Shcherbakov A.A., Yanulevich A.S. Influence of the Baikal pulp and paper mill on Lake Baikal. Advances in Modern Natural Science. 2010;10:63–64. (In Russ.).

18. Ulrich D.V. Ecological burden on the environment by copper mining and processing enterprises in the South Ural region. XXI century. Technosphere safety. 2016;1(1):49–59. (In Russ.).

19. Novikov S.G. Assessment of the level of heavy metal pollution of soils in Kondopoga and Kostomuksha (Republic of Karelia). Dokuchaev Soil Bulletin. 2022;111:157–184. (In Russ.). https://doi.org/10.19047/0136-1694-2022-111-157-184

20. Озера Карелии. Филатов Н.Н., Кухарев В.И. (ред.). Петрозаводск: КарНЦ РАН; 2013. 464 с.

21. Биологические ресурсы водоемов бассейна реки Каменной. Петрозаводск: Карельский филиал АН СССР; 1986. 183 с.

22. Первозванский В.Я. Рыбы водоемов района Костомукшского железорудного месторождения (экология, воспроизводство, использование). Петрозаводск: Карелия; 1986. 216 с.

23. Sardet С. Plankton: Wonders of the drifting world. Chicago: University of Chicago Press; 2015. 224 p. https://doi.org/10.7208/chicago/9780226265346.001.0001

24. Кучко Я.А., Ильмаст Н.В., Кучко Т.Ю. Методы сбора и обработки проб зоопланктона на пресноводных водоемах: учебное пособие для студентов эколого-биологического и агротехнического факультетов. Петрозаводск: ПетрГУ; 2016. 28 с.

25. Мэгарран Э. Экологическое разнообразие и его измерение. М.: Мир; 1992. 181 с.

26. Китаев С.П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск: КарНЦ РАН; 2007. 390 с.

27. Определитель зоопланктона и зообентоса пресных вод Европейской России. Т. 1. Зоопланк тон. М.: Товарищество научных изданий КМК; 2010. 495 с.

28. Timm T. A guide to the freshwater Oligochaeta and Polychaeta of Northern and Central Europe. Lauterbornia. 2009;66:1–235.

29. Определитель зоопланктона и зообентоса пресных вод Европейской России. Т. 2. Зообентос. М.: Товарищество научных изданий КМК; 2016. 457 с.

30. De Jong Y., Verbeek M., Michelsen V., Bjørn P.P., Los W., Steeman F., Bailly N., Basire C., Chylarecki P., Stloukal E., Hagedorn G., Wetzel F.T., Glöckler F., Kroupa A., Korb G., Hoffmann A., Häuser C., Kohlbecker A., Müller A., Güntsch A., Stoev P., Penevet L. Fauna Europaea — all European animal species on the web. Biodiversity Data Journal. 2014;2:e4034. https://doi.org/10.3897/BDJ.2.e4034

31. Руководство по гидробиологическому мониторингу пресноводных экосистем. Под ред. В.А. Абакумова. СПб.: Гидрометеоиздат; 1992. 318 с.

32. Вшивкова Т.С., Иваненко Н.В., Якименко Л.В., Дроздов К.А. Введение в биомониторинг пресных вод. Владивосток: Изд-во ВГУЭС; 2019. 240 с.

33. Hammer Ø., Harper D., Ryan P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 2001;4(1):1.

34. Дгебуадзе Ю.Ю., Чернова О.Ф. Чешуя костистых рыб как диагностическая и регистрирующая структура. М.: КМК; 2009. 313 с.

35. Мина М.В. Задачи и методы изучения роста рыб в природных условиях. Современные проблемы ихтиологии. М.: Наука; 1981. С.177–195.

36. Правдин И.Ф. Руководство по изучению рыб. М.: Пищ. пром-сть; 1966. 376 с.

37. Решетников Ю.С. Экология и систематика сиговых рыб. М.: Наука; 1980. 300 с.

38. Атлас пресноводных рыб России. В 2 т. Решетников Ю.С. (ред.). М.: Наука; 2002. 39. Современное состояние водных объектов Республики Карелия. По результатам мониторинга 1992–1997. Петрозаводск: Карельский научный центр РАН; 1998. 188 с.

39. Андроникова И.Н. Изменения в сообществе зоопланктона в связи с процессом эвтрофирования. В: Эвтрофирование мезотрофного озера. Л.: Наука; 1980. С. 78–99.

40. Андроникова И.Н. Структурно-функциональная организация зоопланктона озерных эко систем разных трофических типов. СПб.: Наука; 1996. 189 с.

41. Леонова Г.А., Бобров В.А. Геохимическая роль планктона континентальных водоемов Сибири в концентрировании и биоседиментации микроэлементов. Новосибирск: Академическое изд-во «Гео»; 2012. 314 с.

42. Li Y., Geng M., Yu J., Du Y., Xu M., Zhang W., Wang J., Su H., Wang R., Chen F. Eutrophication decreases compositional dissimilarity in freshwater plankton communities. Science of The Total Environment. 2022;821:153434. https://doi.org/10.1016/j.scitotenv.2022.153434

43. Куликова Т.П. Зоопланктон водных объектов бассейна Белого моря. Петрозаводск: Карельский научный центр РАН; 2010. 325 с.

44. Чертопруд М.В., Крыленко С.В., Лукиных А.И. Особенности сообществ макрозоо бентоса малых арктических озер Евразии. Биология внутренних вод. 2021;4:378–391. https://doi.org/10.31857/S0320965221030050

45. Лозовик П.А., Маркканен С.Л., Морозов А.К., Платонов А.В., Кравченко И.Ю., Калмыков М.В., Куринная А.А., Ефременко Н.А. Поверхностные воды Калевальского района и территории Костомукши в условиях антропогенного воздействия. Петрозаводск: Карельский научный центр РАН; 2001. 165 с.

46. Denisov D., Terentjev P., Valkova S., Kudryavtzeva L. Small lakes eco-systems under the impact of non-ferrous metallurgy (Russia, Murmansk Region). Environments. 2020;7(4):29. https://doi.org/10.3390/environments7040029

47. Guzeva A.V., Slukovskii Z.I., Dauvalter V.A., Denisov D.B., Cherepanov A.A. Trace element fractions in sediment of urbanised lakes of the arctic zone of Russia. Environmental Monitoring and Assessment. 2021;193:378. https://doi.org/10.1007/s10661-021-09166-z

48. Zobkov M.B., Sabylina A.V., Borodulina G.S., Ryzhakov A.V., Galakhina N.E., Efremenko N.A., Efremova T.A., Zobkova M.V. History of development and main scientific achievements of the Laboratory of Hydrochemistry and Hydrogeology of the Institute of Water Problems and Problems of the Karelian Research Center of the Russian Academy of Sciences. Transactions of the Karelian Research Center of the Russian Academy of Sciences. 2021;4:169–192. (In Russ.). https://doi.org/10.17076/lim1371

49. Maximov A.A., Berezina N.A., Maximova O.B. Interannual changes in benthic biomass under climate-induced variations in productivity of a small northern lake. Fundamental and Applied Limnology. 2021;194(3):187–199. https://doi.org/10.1127/fal/2020/1291

50. Rumyantsev V.A., Izmailova A.V., Kryukov L.N. State of lake water resources in the Russian Arctic zone. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research. 2018;64(1):84–100. (In Russ.). https://doi.org/10.30758/0555-2648-2018-64-1-84-100

51. Rumyantsev V.A., Izmailova A.V. Zoning of the Arctic zone of the Russian Federation as the basis for the development of a fresh water observation system. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research. 2022;68(2):173–190. (In Russ.). https://doi.org/10.30758/0555-2648 2022-68-2-173-190

52. Rumyantsev V.A. Сonceptual and methodological approaches to the organisation of a signal system for controlling the ecological state of surface fresh waters in the territory of the Arctic zone of the Russian Federation. Problemy Arktiki i Antarktiki = Arctic and Antarctic Research. 2024;70(2):210–221. (In Russ.). https://doi.org/10.30758/0555-2648-2024-70-2-210-221


Review

For citations:


Savosin E.S., Kuchko Y.A., Savosin D.S. Hydrobiocenoses of a small arctic lake under urbanization conditions. Arctic and Antarctic Research. 2025;71(2):201-214. (In Russ.) https://doi.org/10.30758/0555-2648-2025-71-2-201-214

Views: 12


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)