Preview

Проблемы Арктики и Антарктики

Расширенный поиск

Some aspects of the nutrient geochemistry of Novaya Zemlya rocks

https://doi.org/10.30758/0555-2648-2025-71-4-445-468

Аннотация

The primary sources of nutrients in the Arctic are river runoff and remineralization processes. However, the local characteristics of coastal ecosystem functioning are strongly influenced by the supply of nutrients from glacial meltwater, particularly in regions where glacier-fed streams interact with the bedrock. In this study, we tested the hypothesis that rocks which form the bedrock of glacial streams, such as sandstones, siltstones, shales and carbonates, can serve as significant sources of nutrient elements (notably nitrogen and silicon) for coastal ecosystems. Laboratory experiments involving the exposure of representative rock samples to distilled water for up to 30 days demonstrated a measurable increase in nutrient concentrations. The observed leaching rates for nitrate nitrogen and dissolved silicon reached up to 7.9 micromoles per square meter per day and 30.7 micromoles per square meter per day, respectively, in the most reactive samples (these were sandstone from Stepovogo bay and siltstone from Blagopolychia bay). The results indicate that the release of nutrient elements from glacial bedrock, particularly during periods of enhanced meltwater runoff, can contribute significantly to the balance of nutrients and primary productivity of Arctic coastal ecosystems.

Ключевые слова


Об авторах

G. V. Borisenko
P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Россия

Moscow



E. V. Rakhimova
Federal State Budgetary Educational Institution of Higher Education Sergo Ordzhonikidze Russian State University for Geological Prospecting; IPNE LLC
Россия

Mosco



E. V. Koltovskaya
P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences
Россия

Moscow



F. A. Obrezchikov
Lomonosov Moscow State University
Россия

Moscow



A. Yu. Miroshnikov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS)
Россия

Moscow



Список литературы

1. Vihma T. Effects of arctic sea ice decline on weather and climate: A review. Surveys in Geophysics. 2014;35:1175–1214. https://doi.org/10.1007/s10712-014-9284-0

2. Jenkins M., Dai A. The impact of sea-ice loss on arctic climate feedbacks and their role for arctic amplification. Geophysical Research Letters. 2021;48(15):e2021GL094599. https://doi.org/10.1029/2021GL094599

3. Bonnett N., Birchall S.J. Vulnerable communities: The need for local-scale climate change adaptation planning. Climate Action. 2020;873–882. https://doi.org/10.1007/978-3-319-71063-1_87-1

4. Dalpadado P., Arrigo K.R., Hjøllo S.S., Rey F., Ingvaldsen R.B., Sperfeld E., Van Dijken G.L., Stige L.C., Olsen A., Ottersen G. Productivity in the Barents Sea — response to recent climate variability. PloS One. 2014;9(5):e95273. https://doi.org/10.1371/journal.pone.0095273

5. Arrigo K.R., Van Dijken G.L. Continued increases in Arctic Ocean primary production. Progress in Oceanography. 2015;136:60–70. https://doi.org/10.1016/j.pocean.2015.05.002

6. Koryakin V.S. Glaciers of Novaya Zemlya in the 20th century and global warming. Nature. 2013;(1):42–48.

7. Franson S.E., Smith J.L., Johnson M. Arctic ecosystem response to climate change: hydrological and biogeochemical perspectives. Polar Research. 2015;34:201–214. https://doi.org/10.3402/polar.v34.20115

8. Pain A., Martin J., Martin E. Differences in the quantity and quality of organic matter exported from Greenlandic glacial and deglaciated watersheds. Global Biochemical Cycles. 2020; 34:e2020GB006614. https://doi.org/10.1029/2020GB006614

9. McGovern S.T., Evans C.D., Dennis P., Walmsley C.A., Turner A., McDonald M.A. Increased inorganic nitrogen leaching from a mountain grassland ecosystem following grazing removal: a hangover of past intensive land-use? Biogeochemistry. 2014;119(1):125–138. https://doi.org/10.1007/s10533-014-9952-7

10. Nitishinsky M., Anderson L.G., Hölemann J.A. Inorganic carbon and nutrient fluxes on the arctic shelf. Continental Shelf Research. 2007;27(10–11):1584–1599. https://doi.org/10.1016/j.csr.2007.01.019

11. Wadham J.L., Hawkings J., Telling J., Chandler D., Alcock J., O'Donnell E., Kaur P., Bagshaw E., Tranter M., Tedstone A., Nienow P. Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences. 2016;13(22):6339–6352. https://doi.org/10.5194/bg-13-6339-2016

12. Dixon J.C., Campbell S.W., Durham B. Geologic nitrogen and climate change in the geochemical budget of Kärkevagge, Swedish Lapland. Geomorphology. 2012;167:70–76. https://doi.org/10.1016/j.geomorph.2012.03.011

13. Bhatia M.P., Kujawinski E.B., Das S.B., Breier C.F., Henderson P.B., Charette M.A. Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nature Geoscience. 2013;6:274–278. https://doi.org/10.1038/ngeo1746

14. Hopwood M.J., Bacon S., Arendt K., Connelly D.P., Statham P.J. Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic. Biogeochemistry. 2015;124(1):1–11.

15. Dixon J.C., Thorn C.E., Darmody R.G., Campbell S.W. Weathering rinds and rock coatings from an Arctic alpine environment, northern Scandinavia. Geological Society of America Bulletin. 2002;114(2):226–238. https://doi.org/10.1130/0016-7606(2002)114<0226:WRARCF>2.0.CO;2

16. Hawkings J., Wadham J., Tranter M., Lawson E., Sole A., Cowton T., Tedstone A., Bartholomew I., Nienow P., Chandler D., Telling J. The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochemical Perspectives Letters. 2015;1(1):94–104. https://doi.org/10.7185/geochemlet.1510

17. Musilova M., Tranter M., Bamber J.L., Takeuchi N., Anesio A.M. Microbially driven export of labile organic carbon from the Greenland ice sheet. Nature Geoscience. 2017;10:360–365. https:// doi.org/10.1038/ngeo2920

18. Pogojeva M., Polukhin A., Makkaveev P., Staalstrøm A., Berezina A., Yakushev E. Arctic inshore biogeochemical regime influenced by coastal runoff and glacial melting (case study for the Templefjord, Spitsbergen). Geosciences. 2022;12(1):44. https://doi.org/10.3390/geosciences12010044

19. Polukhin A., Makkaveev P., Miroshnikov A., Borisenko G., Khlebopashev P. Leaching of inorganic carbon and nutrients from rocks of the Arctic archipelagos (Novaya Zemlya and Svalbard). Russian Journal of Earth Sciences. 2021;21(4):2. https://doi.org/10.2205/2021ES000758

20. Borisenko G.V. Hydrochemical features of the watercourses of Novaya Zemlya (Kara coast) and their influence on the hydrochemical regime of the bays of the archipelago. Synopsis of the dissertation for the degree of candidate of geographical sciences. M.: P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences; 2024.

21. Makkaveev P.N., Polukhin A.A., Khlebopashev P.V. The surface runoff of nutrients from the coasts of Blagopoluchiya bay of the Novaya Zemlya Archipelago. Oceanology. 2013;53(5):539–546. https://doi.org/10.1134/S000143701305010X

22. Flint M.V. Cruise 54th of the research vessel Akademik Mstislav Keldysh in the Kara Sea. Oceanology. 2010;50(5):637. https://doi.org/10.1134/S0001437010050012

23. Flint M.V., Poyarkov S.G. Comprehensive research on the Kara Sea ecosystem (128th cruise of research vessel Professor Shtokman). Oceanology. 2015;55(4):657. https://doi.org/10.1134/S0001437015040074

24. Bolshiyanov D.Yu. River systems of Novaya Zemlya: features of morphology, regime, and runoff. Izvestiya of the Russian Geographical Society. 2006;138(3):11–19.

25. Grasshoff K., Kremling K., Ehrhardt M. Methods of seawater analysis. Weinheim: John Wiley & Sons; 2007. 632 p.

26. Mukhanov V.S., Litvinyuk D.A., Sakhon E.G., Bagaev A.V., Veerasingam S., VenkatachalapathyR. A new method for analyzing microplastic particle size distribution in marine environmental samples. Ecologica Montenegrina. 2019;23:77–86. https://doi.org/10.37828/em.2019.23.10

27. Korago E.A., Kovaleva G.N., Schekoldin R.A., Il’in V.F., Gusev E.A., Krylov A.A., Gorbunov D.A. Geological structure of the Novaya Zemlya archipelago (West Russian Arctic) and peculiarities of the tectonics of the Eurasian Arctic. Geotectonics. 2022;56(2):123–156. https://doi.org/10.1134/S0016852122020030

28. Petrov O.V., Sobolev N.N., Koren T.N., Vasiliev V.E., Petrov E.O., Larssen G.B., Smelror M. Palaeozoic and early Mesozoic evolution of the East Barents and Kara seas sedimentary basins. Norwegian Journal of Geology. 2008;88(4):227–234.

29. Ustritsky V.I., Tugarova M.A. Unique Permian and Triassic section penetrated by theAdmiralteyskaya-1 well (Barents Sea). Oil and Gas Geology. Theory and Practice. 2013;8(2):1.

30. Matveev V.P., Tarasenko A.B. A retrospective model of sedimentation of black shale and carbonate formations of the Late Devonian–Early Carboniferous on Severny Island, Novaya Zemlya Archipelago. In: Maslov A.V. (ed.) Sedimentary Complexes of the Urals and Adjacent

31. Kirmasov A.B. Fundamentals of Structural Analysis. M.: Nauchny Mir; 2011. 368 p.

32. Meyers P.A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical geology. 1994;114(3-4):289–302. https://doi.org/10.1016/0009-2541(94)90059-0

33. Falkowski P.G., Fenchel T., Delong E.F. The microbial engines that drive Earth's biogeochemical cycles. Science. 2008;320(5879):1034–1039. https://doi.org/10.1126/science.1153213

34. Schlesinger W.H., Bernhardt E.S. Biogeochemistry: An analysis of global change. 3rd edition. San Diego, CA: Academic Press; 2013. 688 p.

35. Hedges J.I., Stern J.H. Carbon and nitrogen determinations of carbonate-containing solids. Limnology and Oceanography. 1986;29(3):657–663. https://doi.org/10.4319/lo.1984.29.3.0657

36. Allègre C., Manhès G., Lewin É. Chemical composition of the earth and the volatility control on planetary genetics. Earth and Planetary Science Letters. 2001;185(1–2):49–69. https://doi.org/10.1016/S0012-821X(00)00359-9

37. Sweeney B.W. Bioenergetic and developmental response of a mayfly to thermal variation 1. Limnology and Oceanography. 1978;23(3):461–477. https://doi.org/10.4319/lo.1978.23.3.0461

38. Freeze R.A., Cherry J.A. Groundwater. Prentice Hall Inc.: Englewood Cliffs, NJ; 1979. 624 p.

39. Holloway J.M., Dahlgren R.A. Nitrogen in rock: Occurrences and biogeochemical implications. Global Biogeochemical Cycles. 2002;16(4):1118. https://doi.org/10.1029/2002GB001862

40. Dahlgren R.A. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock. Nature. 1994;368(6474):838–841. https://doi.org/10.1038/368838a0

41. Holloway J.M., Dahlgren R.A., Hansen B., Casey W.H. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature. 1998;395(6704):785–788. https://doi.org/10.1038/27360

42. Morford J.L., Emerson S., Breckel E.J., Kim S.H. Geochemistry of redox-sensitive trace metals in sediments of the equatorial Pacific Ocean. Geochimica et Cosmochimica Acta. 2011;75(3):858–875. https://doi.org/10.1016/j.gca.2010.11.008

43. Deas M., Laird J., Tanaka S., Dahlgren R. A. Geologically-derived nitrogen and phosphorus as a source of riverine nutrients. Earth Critical Zone. 2024;1(1):100003. https://doi.org/10.1016/j.ecz.2024.100003

44. Newton R., Bottrell S. Stable isotopes of carbon and sulphur as indicators of environmental change: past and present. Journal of the Geological Society. 2007;164(4): 691–708.

45. Duit W., Jansen J.B.H., van Breemen A., Bos A. Ammonium micas in metamorphic rocks as exemplified by Dome de l'Agout (France). American Journal of Science. 1986;286(9):702–732. https://doi.org/10.2475/ajs.286.9.702

46. Wymore A.S., Fazekas H.M., McDowell W.H. Quantifying the frequency of synchronous carbon and nitrogen export to the river network. Biogeochemistry. 20121;152(1):1–12. https://doi.org/10.1007/s10533-020-00741-z

47. Nikitin D.A., Lysak L.V., Badmadashiev D.V., Kholod S.S., Mergelov N.S., Dolgikh A.V., Goryachkin S.V. Biological activity of soils in the north of the Novaya Zemlya Archipelago: Effect of the largest glacial sheet in Russia. Eurasian Soil Science. 2021;54:1496–1516. https:// doi.org/10.1134/S1064229321130066

48. Laverov N.P., Velichkin V.I., Miroshnikov A.Yu., Krupskaya V.V., Asadulin E.E., Semenkov I.N., Usacheva A.A., Zakusin S.V., Terskaya E.V. Geochemical structure and radiation status of the coastal landscapes of the Kara Sea bays of Novaya Zemlya. Doklady Akademii Nauk = Proceedings of the Russian Academy of Sciences. 2016;467:342–342. https://doi.org/10.1134/S1028334X16030193


Рецензия

Для цитирования:


Borisenko G.V., Rakhimova E.V., Koltovskaya E.V., Obrezchikov F.A., Miroshnikov A.Yu. Some aspects of the nutrient geochemistry of Novaya Zemlya rocks. Проблемы Арктики и Антарктики. 2025;71(4):445-468. https://doi.org/10.30758/0555-2648-2025-71-4-445-468

For citation:


Borisenko G.V., Rakhimova E.V., Koltovskaya E.V., Obrezchikov F.A., Miroshnikov A.Yu. Some aspects of the nutrient geochemistry of Novaya Zemlya rocks. Arctic and Antarctic Research. 2025;71(4):445-468. https://doi.org/10.30758/0555-2648-2025-71-4-445-468

Просмотров: 145


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 0555-2648 (Print)
ISSN 2618-6713 (Online)